Numerical analysis of moisture, thermal and mechanical states for subway double-line tunnel constructed by artificial freezing method
-
摘要: 为了准确分析地铁隧道人工冻结施工过程中的热力学状况, 考虑水分迁移和冰水相变耦合影响以及水泥水化热的生成, 采用热蠕变本构建立了地铁隧道人工冻结施工的水热力耦合分析模型。对广州地铁某双线隧道施工过程中的热力状况进行了数值模拟, 同时应用人工冻土的长期强度对冻结壁安全性进行了评估。分析结果表明: 在地铁冻结法施工时, 最大主应力沿着冻结管呈环形分布, 并且管周围的应力明显偏高; 开挖对环形应力场的影响不大, 而且与其他施工方法不同, 人工冻结法施工引起的地表沉降并不随开挖断面的逐渐扩大而增大, 整个施工过程中的最大地表沉量仅为9.1mm, 因而人工冻结法施工能有效地控制地表沉降量。Abstract: In order to accurately analyze the thermal and mechanical states of subway tunnel constructed by artificial freezing method, the coupled effects of moisture transfer and phase change of ice and water, the generation of cement hydration heat and thermal creep constitutive relationship were taken into account, and a moisture, thermal and mechanical coupled model was established. The thermal and mechanical states of Guangzhou subway double-line tunnel constructed by artificial freezing method were simulated, and the safety of frozen wall was evaluated by using the long-term strength of frozen soil. Analysis result shows that the maximum principal stress distributes circularly along freezing pipes when the subway tunnel is constructed by artificial freezing method, and the stress around freezing pipes is obviously high. Excavation has little influence on circular stress field, the surface settlement caused by artificial freezing construction doesn't increase with excavation expansion, which is different from other construction methods. The maximum settlement is only 9.1 mm during the whole construction, so the surface settlement can be effectively controlled by artificial freezing method.
-
Key words:
- tunnel engineering /
- double-line tunnel /
- artificial freezing method /
- numerical analysis
-
表 1 热力学参数
Table 1. Thermal and mechanical parameters
物理量 ρ/(kg·m-3) λf/λu/(J·h-1·m-1·℃-1) Cf/Cu/(J·kg-1·℃-1) Ef/Eu/MPa vf/vu φf/φu cf/cu/kPa αT/℃-1 a1/% b1 D/(m2·s-1) 人工填土 1 850 3 738/3 323 1 860/2 280 /10 /0.42 /18 /20 1.32×10-5 2.043 0.349 3.4×10-9 粉质粘土 1 910 7 632/5 112 1 130/1 390 /12 /0.40 30/20 300/20 9.50×10-6 10.217 0.242 6.6×10-9 砂质粘土 1 900 9 406/6 300 1 160/1 430 /20 /0.30 /28 /19 2.08×10-5 2.513 0.581 8.7×10-9 表 2 水泥的水化热
Table 2. Hydration heat of cement
龄期/d 3 7 28 qv/(kJ·m-3) 3.625×105 3.930×105 4.843×105 -
[1] 赖远明, 邓学钧. 地层冻结技术综述[J]. 东南大学学报: 自然科学版, 2000, 30(6): 163-170.LAI Yuan-ming, DENG Xue-jun. An overview of ground freezing technology[J]. Journal of Southeast University: Natural Science Edition, 2000, 30(6): 163-170. (in Chinese) [2] 余力, 马英明. 特殊凿井法在矿井建设中的应用和发展[J]. 岩土工程学报, 1984, 6(3): 2-10. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC198403000.htmYU Li, MA Ying-ming. Application and development of specialmethods of shaft sinkingfor mining constructionin China[J]. Journal of Geotechnical Engineering, 1984, 6(3): 2-10. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC198403000.htm [3] 萧岩, 程工. 城市地下工程冻结法施工技术及其应用[J]. 市政技术, 2002, 112(3): 20-32. https://www.cnki.com.cn/Article/CJFDTOTAL-SZJI200203003.htmXIAO Yan, CHENG Gong. A construction technique and its application of freezing method in urban substructure work[J]. Municipal Engineering Technology, 2002, 112(3): 20-32. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SZJI200203003.htm [4] 周晓敏, 苏立凡, 贺长俊, 等. 北京地铁隧道水平冻结法施工[J]. 岩土工程学报, 1999, 21(3): 319-322. doi: 10.3321/j.issn:1000-4548.1999.03.016ZHOU Xiao-min, SU Li-fan, HE Chang-jun, et al. Horizontal ground freezing method application to tunneling of Beijing underground rail way system[J]. Journal of Geotechnical Engineering, 1999, 21(3): 319-322. (in Chinese) doi: 10.3321/j.issn:1000-4548.1999.03.016 [5] 余占奎, 黄宏伟, 王如路, 等. 人工冻结技术在上海地铁施工中的应用[J]. 冰川冻土, 2005, 27(4): 550-556. doi: 10.3969/j.issn.1000-0240.2005.04.013YU Zhan-kui, HUANG Hong-wei, WANG Ru-lu, et al. Application of the artificially ground freezing methods to Shanghai metro engineering[J]. Journal of Glaciology and Geocryology, 2005, 27(4): 550-556. (in Chinese) doi: 10.3969/j.issn.1000-0240.2005.04.013 [6] 王文顺, 王建平, 井绪文, 等. 人工冻结过程中温度场的试验研究[J]. 中国矿业大学学报, 2004, 33(4): 388-391. doi: 10.3321/j.issn:1000-1964.2004.04.006WANG Wen-shun, WANG Jian-ping, JI NG Xu-wen, et al. Experi mental study of temperature field course of artificial freezing[J]. Journal of China University of Mining and Tech-nology, 2004, 33(4): 388-391. (in Chinese) doi: 10.3321/j.issn:1000-1964.2004.04.006 [7] 李双洋, 张明义, 高志华, 等. 广州某地铁人工冻结法施工热力分析[J]. 冰川冻土, 2006, 28(6): 823-832. doi: 10.3969/j.issn.1000-0240.2006.06.004LI Shuang-yang, ZHANG Ming-yi, GAO Zhi-hua, et al. Thermal and mechanical analysis of the artificial freezing method applied to a subway tunnel in Guangzhou[J]. Journal of Glaciology and Geocryology, 2006, 28(6): 823-832. (in Chinese) doi: 10.3969/j.issn.1000-0240.2006.06.004 [8] 李宁, 徐彬, 陈飞雄. 冻土路基温度场、变形场和应力场的耦合分析[J]. 中国公路学报, 2006, 19(3): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200603000.htmLI Ning, XU Bin, CHEN Fei-xiong. Coupling analysis of temperature, deformation and stress fieldfor frozen soil road-bed[J]. China Journal of Highway and Transport, 2006, 19(3): 1-7. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200603000.htm [9] LI Shuang-yang, LAI Yuan-ming, ZHANG Ming-yi, et al. Seismic analysis of embankment of Qinghai-Tibet rail way[J]. Cold Regions Science and Technology, 2009, 55(1): 151-159. [10] LAI Yuan-ming, WANG Qiu-sheng, NI U Fu-jun, et al. Three-di mensional nonlinear analysis for temperature characteris-tic of ventilated embankment in permafrost regions[J]. Cold Regions Science and Technology, 2004, 38(2/3): 165-184. [11] LAI Yuan-ming, ZHANG Xue-fu, YU Wen-bing, et al. Three-di mensional nonlinear analysis for the coupled problem of the heat transfer of the surrounding rock and the heat con-vection between the air and the surrounding rock in cold-region tunnel[J]. Tunnelling and Underground Space Technology, 2005, 20(4): 323-332.