-
摘要: 为了准确把握尺度参数在模型建模、分析以及应用过程中的作用, 以基于极值分布的Multinomial Logit模型和Nested Logit模型为研究对象, 从建模的基础——误差项的分布形式入手, 通过模型形式和误差项性质两方面研究了尺度参数在两种模型中的特性, 并对其进行了对比分析。分析结果表明: 尺度参数不仅限制了模型效用函数的尺度, 而且也反映了误差项的方差水平, 但对于以上两种不同的模型, 其在尺度限制、误差项方差水平及独立性、自身取值范围等方面均表现出不同的特性, Multinomial Logit模型的尺度参数反映了有关整个效用确定项的误差项方差水平, 而Nested Logit模型的尺度参数只是反映了与某一选择枝有关的部分效用确定项的误差项方差水平。
-
关键词:
- 交通规划 /
- 离散选择模型 /
- Logit模型 /
- NestedLogit模型 /
- 尺度参数
Abstract: In order to understand the role of scale parameter in the process of modeling, analysis and application, multinomial logit model and nested logit model were discussed based on extreme value distribution. Starting with the distribution of error terms, the properties of scale parameter in two models were studied in aspects of model expressions and error term properties, and a comparison analysis was made. Analysis result shows that scale parameter not only restricts the scale of utility function, but also reflects the variance of error terms. However, it reveals different properties at two different models in terms of scale restriction, variance and independence degree of error terms, and numerical areas. For multinomial logit model, the scale parameter reflects the variance of entire error terms, while for nested logit model, it only reflects the variance of a part concerning the observed term for a specific alternative.-
Key words:
- traffic planning /
- discrete choice model /
- logit model /
- nested logit model /
- scale parameter
-
表 1 Logit模型预测结果
Table 1. Estimation results of Logit models
变量 常系数α 费用系数βC 时间系数βT βC/βT PA 0 -0.55 -1.78 0.309 PB 0 -0.81 -2.69 0.301 -
[1] ELI ASSON J, MATTSSON L G. A model for integrated analysis of household location and travel choices[J]. Trans-portation Research Part A, 2000, 34(5): 375-394. [2] GI ANLUCA A, MICHEL B, MATS W. Discrete choice models of pedestrian walking behavior[J]. Transportation Research Part B: Methodological, 2006, 40(8): 667-687. doi: 10.1016/j.trb.2005.09.006 [3] HENSHER D A, GREENE W H. Specification and esti mation of the nested logit model: alternative normalizations[J]. Transportation Research Part B, 2002, 36(1): 1-17. doi: 10.1016/S0191-2615(00)00035-7 [4] HUNT G L. Alternative nested logit model structures and the special case of partial degeneracy[J]. Journal of Regional Science, 2000, 40(1): 89-113. doi: 10.1111/0022-4146.00166 [5] CHOI K H, MOON C G. Generalized extreme value model and additively separable generator function[J]. Journal of Econometrics, 1997, 76(1): 129-140. [6] KLI NG C L, HERRIGES J A. An empirical investigation of the consistency of nested logit models with utility maxi miza-tion[J]. American Journal of Agricultural Economics, 1995, 77(4): 875-884. doi: 10.2307/1243810 [7] HERRIGES J A, KLI NG C L. Testing the consistency of nested logit models with utility maxi mization[J]. Economic Letters, 1996, 50(1): 33-39. doi: 10.1016/0165-1765(95)00727-X [8] TRAI N K E, MCFADDEN D L, MOSHE B A. The demand for local telephone service: a fully discrete model of residential calling patterns and service choice[J]. Rand Journal of Economics, 1987, 18(1): 109-123. doi: 10.2307/2555538 [9] LEE B. Calling patterns and usage of residential tolls service under self-selecting tariffs[J]. Journal of Regulatory Economics, 1999, 16(1): 45-81. doi: 10.1023/A:1008131714712 [10] TVERSKY A. Eli mination by aspects: a theory of choice[J]. Psychological Review, 1972, 79(4): 281-299. doi: 10.1037/h0032955
点击查看大图
表(1)
计量
- 文章访问数: 301
- HTML全文浏览量: 92
- PDF下载量: 604
- 被引次数: 0