-
摘要: 为了保障机场安全, 提高机场运行效率, 建立了依据进出港航班滑行时间最短为决策的多Agent模型, 模型以多Agent技术为基础, 融合了Dijkstra算法的最优路径选择和合同网协议的思想, 形成了基于多Agent的滑行路径优化算法, 并依据该算法进行了仿真分析。仿真结果表明: 与指定航班优先级相比, 使用基于多Agent的优化算法处理同优先级航班, 总运行时间可减少15s;基于多Agent的场面运行调整算法可以有效地把航班和机场上分布的滑行道、跑道、停机位等资源组织起来, 智能地发现冲突、躲避冲突, 达到全局滑行时间最短, 因此, 该算法可行。Abstract: In order to protect airport security and improve operational efficiency, a multi-agent model was developed based on the decision of the shortest taxi time for arrival and departure flights and multi-agent technology, the ideas of selection optimal route in Dijkstra algorithm and contract net protocol were considered, a route optimization algorithm was founded, and simulation analysis was made. Analysis result shows that the total running time can reduce by 15 s compared with the designated priority flights when mult-agent algorithm is used to deal with same prionity flights, and the algorithm can effectively adjust aircrafts and sources at airport, such as taxiways, runways and gate positions, discover and avoid the conflict intelligently, and achieve the shortest time of overall taxiway, so the algorithm is feasible.
-
表 1 飞行计划
Table 1. Flight plan
航班 机型 停机位 起始时间/s 进离 优先级 1 MU3817 5 20 离 1 2 CZ6528 2 5 离 2 3 MU5457 4 20 进 3 -
[1] 常钢. 民航机场停机位分配与优化技术研究[D]. 西安: 西北工业大学, 2006. [2] ZHAN F B. Three fastest shortest path algorithms on real road networks[J]. Journal of Geographic Information and Decision Analysis, 1997, 1(1): 69-82. [3] 计会凤, 徐爱功, 隋达嵬. Dijkstra算法的设计与实现[J]. 辽宁工程技术大学学报: 自然科学版, 2008, 27(S1): 222-223. https://www.cnki.com.cn/Article/CJFDTOTAL-FXKY2008S1090.htmJI Hui-feng, XU Ai-gong, SUI Da-wei. Design and i mple-mentation of Dijkstra algorithm[J]. Journal of Liaoning Technical University: Natural Science, 2008, 27(S1): 222-223. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FXKY2008S1090.htm [4] JI Rong, HANSong-chen. Route opti mizing algorithmof air-port surface based on GIS[J]. Transaction of Nanjing Uni-versity of Aeronautics & amp; amp; Astronautics, 2005, 22(1): 71-77. [5] IDRIS H, CLARKE J P, BHUVA R, et al. Queuing model for taxi-out ti me esti mation[R]. Cambridge: Massachusetts Institute of Technology, 2001. [6] 王艳华. 基于多智能体MAS的智能交通控制系统的研究[D]. 长沙: 长沙理工大学, 2007. [7] 李实永. MAS在智能交通系统中的应用研究[J]. 城市交通, 2006, 4(5): 78-80. https://www.cnki.com.cn/Article/CJFDTOTAL-CSJT200605014.htmLI Shi-yong. Application of MASinintelligent transportation systems[J]. Urban Transport of China, 2006, 4(5): 78-80. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CSJT200605014.htm [8] 李薇, 张凤鸣. 多Agent技术研究与应用[J]. 微计算机信息, 2006, 22(8-3): 293-295. https://www.cnki.com.cn/Article/CJFDTOTAL-WJSJ200624106.htmLI Wei, ZHANG Feng-ming. Research and application of multi-agent technology[J]. Microcomputer Information, 2006, 22(8-3): 293-295. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WJSJ200624106.htm [9] SMITHR G. The contract net protocol: high-level communi-cation and control in a distributed problemsolver[J]. IEEE Transactions on Computers, 1980, 29(12): 1104-1113.