-
摘要: 为了研究交通循环荷载下黄河冲积粉土的动态特性, 基于室内应力控制式动三轴试验, 并考虑动应力、含水率两个因素的变化, 研究了压实粉土的累积塑性变形、回弹模量及临界动应力的变化规律。试验结果表明: 循环荷载下压实粉土的累积变形与动应力、含水率的高低均有关, 动应力越大, 累积变形随含水率增加而增长较快; 压实粉土的回弹模量随动应力增加而缓慢降低, 随含水率增加线性减小; 压实粉土的临界动应力随含水率增加线性降低。Abstract: In order to investigate the dynamic characters of compacted silt under cyclic load, the variations of its dynamic stress and water content were considered. The cumulative plastic deformation, resilient modulus and critical dynamic stress of compacted silt were studied based on stress-controlled dynamic triaxial test in laboratory. Test result shows that the cumulative deformation of compacted silt is closely related with its dynamic stress and water content. The higher its dynamic stress is, the faster the growth speed of its cumulative deformation with the increase of its water content is. The resilient modulus of compacted silt decreases gradually with the increase of its dynamic stress, and decreases linearly with the increase of its water content. Its critical dynamic stress of compacted silt also decreases linearly with the increase of its water content.
-
表 1 粉土的基本物理力学性质指标
Table 1. Basic physical-mechanical indices of silt
试样编号 相对密度 液限/% 塑限/% 塑性指数 颗粒百分比/% 最优含水率/% 最大干密度/(g·cm-3) 0.075~30.250 mm 0.005~0.075 mm < 0.005 mm 1 2.657 30.4 21.4 9.0 11.38 78.71 9.91 11.96 1.87 2 2.643 29.5 20.8 8.7 19.73 66.80 13.47 3 2.623 27.6 20.7 6.9 20.99 70.85 8.16 表 2 试验条件及理由
Table 2. Test conditions and reasons
试验条件 理由 动应力σd不小于30 kPa 路基面的动应力水平 频率f为1 Hz 交通荷载下路基面为低频动荷载, 且频率影响不大[7] 围压σ3为20 kPa 符合现场路基侧向应力条件, 且围压影响不大[8] 循环次数N为10 000 考虑循环荷载长期作用的影响 压实系数K为0.90 既有铁路路基基床平均压实系数 含水率w不小于最优含水率wopt 路基遇不利季节含水率增大, 更易产生破坏 固结不排水(CU) 交通荷载下路基中的水来不及排出 -
[1] 肖军华, 刘建坤, 彭丽云, 等. 黄河冲积粉土的干密度及含水率对力学性质影响[J]. 岩土力学, 2008, 29(2): 409-414.XI AOJun-hua, LI UJian-kun, PENG Li-yun, et al. Effect of dry density and moisture content on behaviors of Yellow River alluvial silt[J]. Rock and Soil Mechanics, 2008, 29(2): 409-414. (in Chinese) [2] 彭丽云, 刘建坤, 肖军华, 等. 京九线路基压实粉土力学特性的试验[J]. 北京交通大学学报, 2007, 31(4): 56-60. https://www.cnki.com.cn/Article/CJFDTOTAL-BFJT200704015.htmPENG Li-yun, LIUJian-kun, XIAOJun-hua, et al. Mechanics properties of compacted silt on Beijing-Kowloon railway[J]. Journal of Beijing Jiaotong University, 2007, 31(4): 56-60. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BFJT200704015.htm [3] 贾永刚, 董好刚, 单红仙, 等. 黄河三角洲粉质土硬壳层特征及成因研究[J]. 岩土力学, 2007, 28(10): 2029-2035. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200710003.htmJI A Yong-gang, DONG Hao-gang, SHAN Hong-xian, et al. Study of characters andformation mechanismof hard crust on tidal flat of Yellow River estuary[J]. Rock and Soil Mechanics, 2007, 28(10): 2029-2035. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200710003.htm [4] 商庆森, 朱海波, 杜红庆. 行车荷载和填筑高度对粉性土路堤变形的影响[J]. 公路交通科技, 2004, 21(1): 22-25. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK200401007.htmSHANG Qing-sen, ZHU Hai-bo, DU Hong-qing. Effect of traffic load and fill height on the silt embankment s defor-mation[J]. Journal of Highway and Transportation Research and Development, 2004, 21(1): 22-25. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK200401007.htm [5] 王立军. 重载铁路路基评估的试验研究[D]. 北京: 中国铁道科学研究院, 2005.WANG Li-Jun. Experi mental study of subgrade evaluation of heavy weight railway[D]. Beijing: China Academy of Railway Sciences, 2005. (in Chinese) [6] 申爱琴, 郑南翔, 苏毅, 等. 含砂低液限粉土填筑路基压实机理及施工技术研究[J]. 中国公路学报, 2000, 13(4): 12-15. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200004002.htmSHEN Ai-qin, ZHENG Nan-xiang, SU Yi, et al. Study of compacting mechanismand construction technology of filling road bed with bearing sand silt of lowliquid li mit[J]. China Journal of Highway and Transport, 2000, 13(4): 12-15. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200004002.htm [7] 李美江. 道路材料振动压实特性研究[D]. 西安: 长安大学, 2002.LI Mei-jiang. Study of vibrating compaction of road materials[D]. Xi an: Chang an University, 2002. (in Chinese) [8] 曹卫东. 低液限粉土填筑路基压实性能的研究[D]. 济南: 山东大学, 2002.CAO Wei-dong. Study on compaction characters of lowliquid li mit silt[D]. Jinan: Shangdong University, 2002. (in Chinese) [9] 孙海军. 粉土稳定技术研究[D]. 南京: 东南大学, 2002.SUN Hai-jun. Study of stabilization techniques of silt[D]. Nanjing: Southeast University, 2002. (in Chinese) [10] 朱志铎, 刘松玉, 孙海军. 江苏徐宿地区粉土的基本特性及加固方法研究[J]. 岩土力学, 2004, 25(7): 1155-1158. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX20040700X.htmZHUZhi-duo, LIUSong-yu, SUN Hai-jun. Study of stabilized silt in Xu-Su area[J]. Rock and Soil Mechanics, 2004, 25(7): 1155-1158. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX20040700X.htm [11] 曾长女, 刘汉龙, 周云东. 粉土动力特性研究综述[J]. 防灾减灾工程学报, 2005, 25(1): 99-104. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK20050100H.htmZENG Chang-nu, LI U Han-long, ZHOU Yun-dong. Review of silty soil dynamic characteristics[J]. Journal of Disaster Prevention and Mitigation Engineering, 2005, 25(1): 99-104. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK20050100H.htm [12] 张洪亮, 郭忠印, 高启聚, 等. 重复荷载作用下砂土永久变形预估模型[J]. 交通运输工程学报, 2008, 8(3): 58-62. http://transport.chd.edu.cn/article/id/200803013ZHANG Hong-liang, GUO Zhong-yin, GAO Qi-ju, et al. Permanent deformation prediction model of sandy soil under repeated load[J]. Journal of Traffic and Transportation Engineering, 2008, 8(3): 58-62. (in Chinese) http://transport.chd.edu.cn/article/id/200803013 [13] MONISMITH C L, OGAWA N, FREEME C R. Permanent deformation characteristics of subgrade soils due to repeated loading[C]//TRB. TRR537. Washington DC: NRC, 1975: 1-17. [14] MUHANNA A S, RAHMAN MS, LAMBE P C. Resilient modulus and permanent strain of subgrade soils[C]//TRB. TRR1619. Washington DC: NRC, 1998: 85-93. [15] QI U Yan-jun, DENNIS N D, ELLIOTT R P. Deformation characteristics of subgrade soils under repeated loading[J]. Geotechnical Engineering, 1999, 30: 85-97. [16] WERKMEISTER S, DAWSON A R, WELLNER F. Pavement design model for unbound granular materials[J]. Journal of Transportation Engineering, 2004, 130(5): 665-674. [17] 邱延峻, 孙振堂. 柔性路面路基土的永久变形[J]. 西南交通大学学报, 2000, 35(2): 116-120. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT200002001.htmQI U Yan-jun, SUN Zhen-tang. Permanent deformation of subgrade soils in flexible pavement[J]. Journal of Southwest Jiaotong University, 2000, 35(2): 116-120. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT200002001.htm [18] WERKMEISTER S, DAWSON A R, WELLNER F. Pavement design model for unbound granular materials[J]. Journal of Transportation Engineering, 2004, 130(5): 665-674.