留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

循环荷载下压实粉土的动态特性

关彦斌 肖军华 陈建国

关彦斌, 肖军华, 陈建国. 循环荷载下压实粉土的动态特性[J]. 交通运输工程学报, 2009, 9(2): 28-31. doi: 10.19818/j.cnki.1671-1637.2009.02.006
引用本文: 关彦斌, 肖军华, 陈建国. 循环荷载下压实粉土的动态特性[J]. 交通运输工程学报, 2009, 9(2): 28-31. doi: 10.19818/j.cnki.1671-1637.2009.02.006
GUAN Yan-bin, XIAO Jun-hua, CHEN Jian-guo. Dynamic characters of compacted silt under cyclic load[J]. Journal of Traffic and Transportation Engineering, 2009, 9(2): 28-31. doi: 10.19818/j.cnki.1671-1637.2009.02.006
Citation: GUAN Yan-bin, XIAO Jun-hua, CHEN Jian-guo. Dynamic characters of compacted silt under cyclic load[J]. Journal of Traffic and Transportation Engineering, 2009, 9(2): 28-31. doi: 10.19818/j.cnki.1671-1637.2009.02.006

循环荷载下压实粉土的动态特性

doi: 10.19818/j.cnki.1671-1637.2009.02.006
基金项目: 

铁道部科技研究开发计划项目 2005G012

详细信息
    作者简介:

    关彦斌(1974-), 男, 黑龙江哈尔滨人, 北京工业大学讲师, 工学博士, 博士后, 从事路基路面工程研究

  • 中图分类号: U213.14

Dynamic characters of compacted silt under cyclic load

More Information
    Author Bio:

    GUAN Yan-bin(1974-), male, lecturer, PhD, +86-10-67396960, guanyb163@163.com

  • 摘要: 为了研究交通循环荷载下黄河冲积粉土的动态特性, 基于室内应力控制式动三轴试验, 并考虑动应力、含水率两个因素的变化, 研究了压实粉土的累积塑性变形、回弹模量及临界动应力的变化规律。试验结果表明: 循环荷载下压实粉土的累积变形与动应力、含水率的高低均有关, 动应力越大, 累积变形随含水率增加而增长较快; 压实粉土的回弹模量随动应力增加而缓慢降低, 随含水率增加线性减小; 压实粉土的临界动应力随含水率增加线性降低。

     

  • 图  1  荷载循环次数与累积应变关系

    Figure  1.  Relations between load cycles and cumulative strains

    图  2  含水率对累积应变的影响

    Figure  2.  Effect of water content on cumulative strain

    图  3  动应力对回弹模量的影响

    Figure  3.  Effect of dynamic stress on resilient modulus

    图  4  含水率对回弹模量的影响

    Figure  4.  Effect of water content on resilient modulus

    图  5  饱和度对临界动应力的影响

    Figure  5.  Effect of saturation on critical dynamic stress

    表  1  粉土的基本物理力学性质指标

    Table  1.   Basic physical-mechanical indices of silt

    试样编号 相对密度 液限/% 塑限/% 塑性指数 颗粒百分比/% 最优含水率/% 最大干密度/(g·cm-3)
    0.075~30.250 mm 0.005~0.075 mm < 0.005 mm
    1 2.657 30.4 21.4 9.0 11.38 78.71 9.91 11.96 1.87
    2 2.643 29.5 20.8 8.7 19.73 66.80 13.47
    3 2.623 27.6 20.7 6.9 20.99 70.85 8.16
    下载: 导出CSV

    表  2  试验条件及理由

    Table  2.   Test conditions and reasons

    试验条件 理由
    动应力σd不小于30 kPa 路基面的动应力水平
    频率f为1 Hz 交通荷载下路基面为低频动荷载, 且频率影响不大[7]
    围压σ3为20 kPa 符合现场路基侧向应力条件, 且围压影响不大[8]
    循环次数N为10 000 考虑循环荷载长期作用的影响
    压实系数K为0.90 既有铁路路基基床平均压实系数
    含水率w不小于最优含水率wopt 路基遇不利季节含水率增大, 更易产生破坏
    固结不排水(CU) 交通荷载下路基中的水来不及排出
    下载: 导出CSV
  • [1] 肖军华, 刘建坤, 彭丽云, 等. 黄河冲积粉土的干密度及含水率对力学性质影响[J]. 岩土力学, 2008, 29(2): 409-414.

    XI AOJun-hua, LI UJian-kun, PENG Li-yun, et al. Effect of dry density and moisture content on behaviors of Yellow River alluvial silt[J]. Rock and Soil Mechanics, 2008, 29(2): 409-414. (in Chinese)
    [2] 彭丽云, 刘建坤, 肖军华, 等. 京九线路基压实粉土力学特性的试验[J]. 北京交通大学学报, 2007, 31(4): 56-60. https://www.cnki.com.cn/Article/CJFDTOTAL-BFJT200704015.htm

    PENG Li-yun, LIUJian-kun, XIAOJun-hua, et al. Mechanics properties of compacted silt on Beijing-Kowloon railway[J]. Journal of Beijing Jiaotong University, 2007, 31(4): 56-60. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BFJT200704015.htm
    [3] 贾永刚, 董好刚, 单红仙, 等. 黄河三角洲粉质土硬壳层特征及成因研究[J]. 岩土力学, 2007, 28(10): 2029-2035. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200710003.htm

    JI A Yong-gang, DONG Hao-gang, SHAN Hong-xian, et al. Study of characters andformation mechanismof hard crust on tidal flat of Yellow River estuary[J]. Rock and Soil Mechanics, 2007, 28(10): 2029-2035. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200710003.htm
    [4] 商庆森, 朱海波, 杜红庆. 行车荷载和填筑高度对粉性土路堤变形的影响[J]. 公路交通科技, 2004, 21(1): 22-25. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK200401007.htm

    SHANG Qing-sen, ZHU Hai-bo, DU Hong-qing. Effect of traffic load and fill height on the silt embankment s defor-mation[J]. Journal of Highway and Transportation Research and Development, 2004, 21(1): 22-25. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK200401007.htm
    [5] 王立军. 重载铁路路基评估的试验研究[D]. 北京: 中国铁道科学研究院, 2005.

    WANG Li-Jun. Experi mental study of subgrade evaluation of heavy weight railway[D]. Beijing: China Academy of Railway Sciences, 2005. (in Chinese)
    [6] 申爱琴, 郑南翔, 苏毅, 等. 含砂低液限粉土填筑路基压实机理及施工技术研究[J]. 中国公路学报, 2000, 13(4): 12-15. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200004002.htm

    SHEN Ai-qin, ZHENG Nan-xiang, SU Yi, et al. Study of compacting mechanismand construction technology of filling road bed with bearing sand silt of lowliquid li mit[J]. China Journal of Highway and Transport, 2000, 13(4): 12-15. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200004002.htm
    [7] 李美江. 道路材料振动压实特性研究[D]. 西安: 长安大学, 2002.

    LI Mei-jiang. Study of vibrating compaction of road materials[D]. Xi an: Chang an University, 2002. (in Chinese)
    [8] 曹卫东. 低液限粉土填筑路基压实性能的研究[D]. 济南: 山东大学, 2002.

    CAO Wei-dong. Study on compaction characters of lowliquid li mit silt[D]. Jinan: Shangdong University, 2002. (in Chinese)
    [9] 孙海军. 粉土稳定技术研究[D]. 南京: 东南大学, 2002.

    SUN Hai-jun. Study of stabilization techniques of silt[D]. Nanjing: Southeast University, 2002. (in Chinese)
    [10] 朱志铎, 刘松玉, 孙海军. 江苏徐宿地区粉土的基本特性及加固方法研究[J]. 岩土力学, 2004, 25(7): 1155-1158. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX20040700X.htm

    ZHUZhi-duo, LIUSong-yu, SUN Hai-jun. Study of stabilized silt in Xu-Su area[J]. Rock and Soil Mechanics, 2004, 25(7): 1155-1158. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX20040700X.htm
    [11] 曾长女, 刘汉龙, 周云东. 粉土动力特性研究综述[J]. 防灾减灾工程学报, 2005, 25(1): 99-104. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK20050100H.htm

    ZENG Chang-nu, LI U Han-long, ZHOU Yun-dong. Review of silty soil dynamic characteristics[J]. Journal of Disaster Prevention and Mitigation Engineering, 2005, 25(1): 99-104. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK20050100H.htm
    [12] 张洪亮, 郭忠印, 高启聚, 等. 重复荷载作用下砂土永久变形预估模型[J]. 交通运输工程学报, 2008, 8(3): 58-62. http://transport.chd.edu.cn/article/id/200803013

    ZHANG Hong-liang, GUO Zhong-yin, GAO Qi-ju, et al. Permanent deformation prediction model of sandy soil under repeated load[J]. Journal of Traffic and Transportation Engineering, 2008, 8(3): 58-62. (in Chinese) http://transport.chd.edu.cn/article/id/200803013
    [13] MONISMITH C L, OGAWA N, FREEME C R. Permanent deformation characteristics of subgrade soils due to repeated loading[C]//TRB. TRR537. Washington DC: NRC, 1975: 1-17.
    [14] MUHANNA A S, RAHMAN MS, LAMBE P C. Resilient modulus and permanent strain of subgrade soils[C]//TRB. TRR1619. Washington DC: NRC, 1998: 85-93.
    [15] QI U Yan-jun, DENNIS N D, ELLIOTT R P. Deformation characteristics of subgrade soils under repeated loading[J]. Geotechnical Engineering, 1999, 30: 85-97.
    [16] WERKMEISTER S, DAWSON A R, WELLNER F. Pavement design model for unbound granular materials[J]. Journal of Transportation Engineering, 2004, 130(5): 665-674.
    [17] 邱延峻, 孙振堂. 柔性路面路基土的永久变形[J]. 西南交通大学学报, 2000, 35(2): 116-120. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT200002001.htm

    QI U Yan-jun, SUN Zhen-tang. Permanent deformation of subgrade soils in flexible pavement[J]. Journal of Southwest Jiaotong University, 2000, 35(2): 116-120. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT200002001.htm
    [18] WERKMEISTER S, DAWSON A R, WELLNER F. Pavement design model for unbound granular materials[J]. Journal of Transportation Engineering, 2004, 130(5): 665-674.
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  440
  • HTML全文浏览量:  158
  • PDF下载量:  245
  • 被引次数: 0
出版历程
  • 收稿日期:  2008-11-08
  • 刊出日期:  2009-04-25

目录

    /

    返回文章
    返回