Shrinkage and creep effects of long-span simple-supported-to-continuous box girder bridge
-
摘要: 利用杆系有限元模型计算了大跨径简支转连续箱梁预制和施工过程中的应力分布和线形变化, 研究了预应力束二次张拉对收缩徐变的作用。以6×70m连续箱梁为例, 按照老化理论原始算法、老化理论修正算法、JTJ023—85规范附录算法与JTG D62—2004规范附录算法, 进行了收缩徐变效应对简支状态和连续状态下箱梁结构应力和变形影响的对比分析。分析结果表明: 不同算法的收缩徐变效应对各跨跨中或支点应力影响的最大差值均在15%以内, 对边跨、次边跨、中跨跨中挠度影响的最大差值分别为36%、79%、54%, 其中JTJ023—85规范附录算法计算的挠度最小, JTGD62—2004规范附录算法计算的挠度最大, 也最接近实测挠度, 因此, 收缩徐变理论的计算分析结果可靠。Abstract: The stress distributions and deformations of long-span simple-supported-to-continuous box girder bridge during different construction stages were calculated by bar finite element models. The influence of prestressed bar's second-time stretching on shrinkage and creep effects was studied. Taking the 6×70 m continuous box girder bridge as an example, according to different types of calculating methods, including the original algorithm of aging theory, the modified algorithm of aging theory, the algorithm in the annex of JTJ 023—85 Code and the algorithm in the annex of JTG D62—2004 Code, the influences of shrinkage and creep effects on the stresses and deformations of box girders during simple-supported stage and continuous stage were compared. Computational result shows that the maximum influencing discrepancies of stresses at mid spans and supporting points are within 15%, and the maximum influencing discrepancies of deflections at the mid-sections of end span, side span and midspan are separately 36%, 79% and 54%. The deflection calculated by the algorithm in the annex of JTJ 023—85 Code is smallest, while that calculated by the algorithm in the annex of JTG D62—2004 Code is biggest and also is closest to the actual measured value. It's confirmed that the theoretic analysis of shrinkage and creep effects is reliable.
-
表 1 箱梁控制截面位移
Table 1. Deflections of dominant sections for box girder bridge
m 计算时间/d 10 30 50 70 90 110 130 150 170 190 L/4处 0.016 2 0.017 8 0.018 9 0.019 8 0.020 5 0.021 2 0.021 7 0.022 3 0.022 8 0.023 2 L/2处 0.021 7 0.023 8 0.025 3 0.026 3 0.027 5 0.028 4 0.029 0 0.029 9 0.030 5 0.031 1 计算时间/d 210 230 250 270 290 310 330 360 720 1080 L/4处 0.023 6 0.023 9 0.024 3 0.024 6 0.024 9 0.025 3 0.025 6 0.025 8 0.028 5 0.029 6 L/2处 0.031 6 0.032 1 0.032 6 0.033 0 0.033 4 0.034 0 0.034 3 0.034 5 0.037 8 0.039 3 -
[1] 汪剑, 方志. 大跨预应力混凝土箱梁桥收缩徐变效应测试与分析[J]. 土木工程学报, 2008, 41(1): 70-81. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200801013.htmWANG Jian, FANG Zhi. Analysis and field measurement of concrete box girder bridges for shrinkage and creep effects[J]. China Civil EngineeringJournal, 2008, 41(1): 70-81. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200801013.htm [2] 何义斌. 大跨度无砟轨道连续梁桥后期徐变变形研究[J]. 铁道学报, 2008, 30(4): 120-124. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB200804024.htmHE Yi-bin. Study on post creep deformation of long-span concrete continuous bridge with ballastless tracks[J]. Journal of the China Rail way Society, 2008, 30(4): 120-124. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB200804024.htm [3] 颜东煌, 田仲初, 李学文, 等. 混凝土桥梁收缩徐变计算的有限元方法与应用[J]. 中国公路学报, 2004, 17(2): 55-58. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200402012.htmYAN Dong-huang, TI AN Zhong-chu, LI Xue-wen, et al. Finite element method and application for the shrinkage[J]. China Journal of Highway and Transport, 2004, 17(2): 55-58. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200402012.htm [4] 秦士洪, 丁智潮, 何熊. 预应力型钢混凝土构件收缩徐变试验[J]. 中国公路学报, 2008, 21(4): 74-80. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200804012.htmQI N Shi-hong, DI NG Zhi-chao, HE Xiong. Experi ment on shrinkage and creep of prestressed steel reinforced concrete member[J]. China Journal of Highway and Transport, 2008, 21(4): 74-80. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200804012.htm [5] 王骅, 薛伟辰. 考虑收缩徐变的钢-混凝土组合梁变形计算[J]. 长安大学学报: 自然科学版, 2004, 24(1): 56-60. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL200401014.htmWANG Hua, XUE Wei-chen. Deflections of steel-concrete composite beams due to shrinkage and creep[J]. Journal of Chang an University: Natural Science Edition, 2004, 24(1): 56-60. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL200401014.htm [6] 雷自学, 晏兴威, 董三升. 混凝土收缩徐变效应对曲线钢-混凝土箱形结合梁桥的影响[J]. 长安大学学报: 自然科学版, 2008, 28(5): 77-80. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL200805019.htmLEI Zi-xue, YAN Xing-wei, DONG San-sheng. Effect of shrinkage and creep of concrete on curved steel-concrete composite box girder bridges[J]. Journal of Chang an University: Natural Science Edition, 2008, 28(5): 77-80. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL200805019.htm [7] 曹国辉, 方志. 混凝土连续箱梁长期受力性能试验研究[J]. 土木工程学报, 2008, 41(9): 83-89. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200809014.htmCAO Guo-hui, FANG Zhi. Experi mental study on the long-term behavior of concrete continuous box girders[J]. China Civil Engineering Journal, 2008, 41(9): 83-89. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200809014.htm [8] BAZANT Z P. Prediction of concrete creep effects using ageadjusted effective modulus method[J]. ACI Journal, 1972, 69(4): 212-217. [9] 陈太聪, 苏成, 韩大建. 桥梁节段施工过程中混凝土收缩徐变效应仿真计算[J]. 中国公路学报, 2003, 16(4): 55-58. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200304012.htmCHEN Tai-cong, SU Cheng, HAN Da-jian. Si mulation calculation of creep and shrinkage effects of concrete during segmental construction of bridges[J]. China Journal of Highway and Transport, 2003, 16(4): 55-58. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200304012.htm [10] 向木生, 张世飙, 张开银, 等. 大跨度预应力混凝土桥梁施工控制技术[J]. 中国公路学报, 2002, 15(4): 38-42. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200204011.htmXIANG Mu-sheng, ZHANG Shi-biao, ZHANG Kai-yin, et al. Control technique for construction of long span prestressed concrete bridge[J]. China Journal of Highway and Transport, 2002, 15(4): 38-42. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200204011.htm