-
摘要: 为了描述拥挤交通流中车辆排队的演化规律, 以基于二流理论建立的当量排队长度模型为依据, 运用微积分方法, 针对单车道路段和多车道路段分别推导出当量排队长度变化率模型, 并利用VISSIM模拟数据对模型进行了验证。结果表明: 当交通流处于拥挤状态时, 当量排队长度变化率近似等于交通波波速; 采样间隔内当量排队长度变化率与实际排队长度变化率接近, 误差法和熵方法证明, 采样间隔越大, 两者越接近, 因此, 提出的模型可以定量描述拥挤交通流中车辆排队的演化速率。Abstract: In order to describe the evolution rules of vehicle queue in congested traffic flow, the equivalent queue length change rate models for single-lane and multi-lane links were educed by calculous method on the basis of equivalent queue length models from two-fluid theory. These models were validated by the simulated data from VISSIM. Analysis result indicates that the equivalent queue length change rate is approximately equal to traffic wave velocity when traffic flow is at congested state. The equivalent and actual queue length change rates approach in sampling interval. Error method and entropy method are used to prove that they more approach when sampling interval is longer. So these models can quantitatively describe the evolution speed of vehicle queue in congested traffic flow.
-
Key words:
- traffic flow /
- two-fluid theory /
- equivalent queue length /
- change rate /
- sampling interval /
- congested state
-
表 1 单车道5 s间隔当量排队长度变化率验证
Table 1. Validation of equivalent queue length change rates for a singlelane in 5 s interval
表 2 单车道15 s间隔当量排队长度变化率验证
Table 2. Validation of equivalent queue length change rates for a single lane in 15 s interval
表 3 单车道排队长度变化率误差分析
Table 3. Error analysis of queue length change rates for a single lane
表 4 双车道路段5 s间隔当量排队长度变化率验证
Table 4. Validation of equivalent queue length change rates for a two-lane link in 5 s interval
表 5 双车道路段25 s间隔当量排队长度变化率验证
Table 5. Validation of equivalent queue length change rates for a two-lane link in 25 s interval
表 6 双车道路段排队长度变化率的误差分析
Table 6. Error analysis of queue length change rates for a two-lane link
-
[1] AKCELIK R, ROUPHAl N. Overflow queues and delays with random and platoon arrivals at signalized intersections[J]. Journal of Advanced Transportation, 1994, 28(3): 227-251. doi: 10.1002/atr.5670280305 [2] 张和生, 张毅, 胡东成. 路段平均行程时间估计方法[J]. 交通运输工程学报, 2008, 8(1): 89-96. doi: 10.3321/j.issn:1671-1637.2008.01.018ZHANG He-sheng, ZHANG Yi, HU Dong-cheng. Esti mation method of average travel ti me for road sections[J]. Journal of Trafficand Transportation Engineering, 2008, 8(1): 89-96. (in Chinese) doi: 10.3321/j.issn:1671-1637.2008.01.018 [3] 袁以武. 信号灯控制交叉口延误建模分析中的若干新问题[D]. 上海: 上海大学, 2002.YUAN Yi-wu. Some newproblemof delay modelling analysis for signalized intersection[D]. Shanghai: Shanghai University, 2002. (in Chinese) [4] LAWSON T W, LOVELL DJ, DAGANZO C F. Using the input-output diagram to determine the spatial and temporal extents of a queue upstream of a bottleneck[J]. Transportation Research Record, 1997(1572): 140-147. [5] 王殿海, 景春光, 曲昭伟. 交通波理论在交叉口交通流分析中的应用[J]. 中国公路学报, 2002, 15(1): 93-96. doi: 10.3321/j.issn:1001-7372.2002.01.023WANG Dian-hai, JING Chun-guang, QUZhao-wei. Application of traffic-wave theory in intersections traffic flow analysis[J]. China Journal of Highway and Transport, 2002, 15(1): 93-96. (in Chinese) doi: 10.3321/j.issn:1001-7372.2002.01.023 [6] 郭秀文. 信号交叉口排队长度预测的神经网路方法[J]. 中南公路工程, 2004, 29(3): 72-75. doi: 10.3969/j.issn.1674-0610.2004.03.021GUO Xiu-wen. Prediction of traffic queues at signalizedinter-section using neutral networks[J]. Central South Highway Engineering, 2004, 29(3): 72-75. (in Chinese) doi: 10.3969/j.issn.1674-0610.2004.03.021 [7] GHOSH-DASTIDAR S, ADELI H. Neural network-wavelet microsi mulation model for delay and queue length esti mation at freeway work zones[J]. Journal of Transportation Engineering, 2006, 132(4): 331-341. doi: 10.1061/(ASCE)0733-947X(2006)132:4(331) [8] 臧华, 彭国雄. 高速道路异常状况下车辆排队长度的预测模型[J]. 交通与计算机, 2003, 21(3): 10-12. https://www.cnki.com.cn/Article/CJFDTOTAL-JTJS200303002.htmZANG Hua, PENG Guo-xiong. Prediction model of vehicle queue length in expressway on abnormal condition[J]. Computer and Communications, 2003, 21(3): 10-12. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JTJS200303002.htm [9] HERMAN R, PRIGOGI NEI. Atwo-fluid approach to town traffic[J]. Science, 1979, 204(4389): 148-151. [10] 姚荣涵, 王殿海, 曲昭伟. 基于二流理论的拥挤交通流当量排队长度模型[J]. 东南大学学报: 自然科学版, 2007, 37(3): 521-526. doi: 10.3321/j.issn:1001-0505.2007.03.034YAO Rong-han, WANG Dian-hai, QUZhao-wei. Equivalent queue length model for congestedtraffic streambased ontwo-fluid theory[J]. Journal of Southeast University: Natural Science Edition, 2007, 37(3): 521-526. (in Chinese) doi: 10.3321/j.issn:1001-0505.2007.03.034 [11] WANG Dian-hai, YAO Rong-han, JI NG Chao. Entropy models of trip distribution[J]. Journal of Urban Planning and Development, 2006, 132(1): 29-35.
计量
- 文章访问数: 457
- HTML全文浏览量: 77
- PDF下载量: 241
- 被引次数: 0