留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Mechanical behavior of steel truss bridge stiffened with rigid cables in construction stage

LIU Yong-jian LIU Jian ZHONG Guan-xing YANG Jian

刘永健, 刘剑, 钟冠星, 杨健. 刚性悬索加劲钢桁梁桥施工阶段力学性能(英文)[J]. 交通运输工程学报, 2009, 9(3): 1-10. doi: 10.19818/j.cnki.1671-1637.2009.03.001
引用本文: 刘永健, 刘剑, 钟冠星, 杨健. 刚性悬索加劲钢桁梁桥施工阶段力学性能(英文)[J]. 交通运输工程学报, 2009, 9(3): 1-10. doi: 10.19818/j.cnki.1671-1637.2009.03.001
LIU Yong-jian, LIU Jian, ZHONG Guan-xing, YANG Jian. Mechanical behavior of steel truss bridge stiffened with rigid cables in construction stage[J]. Journal of Traffic and Transportation Engineering, 2009, 9(3): 1-10. doi: 10.19818/j.cnki.1671-1637.2009.03.001
Citation: LIU Yong-jian, LIU Jian, ZHONG Guan-xing, YANG Jian. Mechanical behavior of steel truss bridge stiffened with rigid cables in construction stage[J]. Journal of Traffic and Transportation Engineering, 2009, 9(3): 1-10. doi: 10.19818/j.cnki.1671-1637.2009.03.001

刚性悬索加劲钢桁梁桥施工阶段力学性能(英文)

doi: 10.19818/j.cnki.1671-1637.2009.03.001
基金项目: 

New Century Excellent Talents in University NCET-06-0855

Science and Technology Project of West Traffic Construction of China 2006318812112

Science and Technology Project of Department of Communications of Guangdong Province 2007-15

详细信息
  • 中图分类号: U491.51

Mechanical behavior of steel truss bridge stiffened with rigid cables in construction stage

Funds: 

New Century Excellent Talents in University NCET-06-0855

Science and Technology Project of West Traffic Construction of China 2006318812112

Science and Technology Project of Department of Communications of Guangdong Province 2007-15

More Information
    Author Bio:

    LIU Yong-jian(1966-), Male, Wuyuan, Jiangxi, Professor of Changʾan University, Research on Bridge Engineering, +86-29-82334577, steellyj@126.com

  • 摘要: 采用空间有限元方法对刚性悬索加劲钢桁梁桥的施工全过程进行了仿真分析, 通过变化边界条件与施加节点强制位移分别模拟结构体系转换和内力调整, 采用释放纵梁一端的纵向刚度来模拟纵梁长圆孔的影响, 对比了6种主要工况下结构的内力和位移。分析结果表明: 通过体系转化和内力调整, 能有效地使刚性悬索与钢桁梁共同受力; 横、纵向内力调整能使结构的中边桁与中边跨的内力差异减小到5%以内; 在纵梁两端设置长圆孔能有效避免其过早参与纵向受力, 仅使整体结构的内力与挠度增加10%左右, 但使得纵梁与横梁的最大组合压应力分别从-271.1-、505.8 MPa降低到-63.0、-178.0 MPa, 小于材料的容许应力210 MPa。

     

  • 图  1  东江大桥主要施工阶段

    Figure  1.  Main construction processes of Dongjiang Bridge

    图  2  全桥有限元模型

    Figure  2.  Finite element model of whole bridge

    图  3  工况1主桁轴力

    Figure  3.  Comparison of axial forces for main trusses in case 1

    图  4  工况1主桁累加位移

    Figure  4.  Accumulative displacements of main trusses in case 1

    图  5  工况1主桁总位移

    Figure  5.  Total displacements of main trusses in case 1

    图  6  工况2下弦轴力

    Figure  6.  Comparison of axial forces for nether chords in case 2

    图  7  工况2上弦轴力

    Figure  7.  Comparison of axial forces for upper chords in case 2

    图  8  工况2总位移

    Figure  8.  Comparison of total displacements in case 2

    图  9  工况2加劲弦轴力

    Figure  9.  Comparison of axial forces for rigid cables in case 2

    图  10  横向内力调整

    Figure  10.  Lateral internal force adjustment

    图  11  工况3下弦轴力

    Figure  11.  Comparison of axial forces for nether chords in case 3

    图  12  工况3上弦轴力

    Figure  12.  Comparison of axial forces for upper chords in case 3

    图  13  工况3加劲弦轴力

    Figure  13.  Comparison of axial forces for rigid cables in case 3

    图  14  纵向内力调整

    Figure  14.  Longitudinal internal force adjustment

    图  15  工况4下弦轴力

    Figure  15.  Comparison of axial forces for nether chords in case 4

    图  16  工况4上弦轴力

    Figure  16.  Comparison of axial forces for upper chords in case 4

    图  17  工况4加劲弦轴力

    Figure  17.  Comparison of axial forces for rigid cables in case 4

    图  18  工况4总位移

    Figure  18.  Comparison of total displacements in case 4

    图  19  工况5主弦轴力

    Figure  19.  Comparison of axial forces for main trusses in case 5

    图  20  工况5加劲弦轴力

    Figure  20.  Comparison of axial forces for rigid cables in case 5

    图  21  工况5总位移

    Figure  21.  Total displacement in case 5

    图  22  工况6下弦轴力

    Figure  22.  Comparison of axial forces for nether trusses in case 6

    图  23  工况6上弦轴力

    Figure  23.  Comparison of axial forces for upper trusses in case 6

    图  24  工况6加劲弦轴力

    Figure  24.  Comparison of axial forces for rigid cables in case 6

    图  25  工况6总位移

    Figure  25.  Comparison of total displacements for main trusses in case 6

    图  26  工况6纵横梁应力比较

    Figure  26.  Stress comparison of stringer and floor beam in case 6

  • [1] GRIGGS J F E. Evolution of the continuous truss bridge[J]. Journal of Bridge Engineering, 2007, 12(1): 105-119. doi: 10.1061/(ASCE)1084-0702(2007)12:1(105)
    [2] WUZhen-wang. Research on suspended stiffening steel trussbridge[D]. Chengdu: Southwest Jiaotong University, 2006. (in Chinese)
    [3] GAO Zong-yu. Overall design of Wuhan TianxingzhouChangjiang River Rail-cum-road Bridge[J]. Bridge Construction, 2007(1): 5-9. (in Chinese)
    [4] WANG Jun. Study of construction technique of long spansteel truss structure[D]. Tianjin: Tianjin University, 2004. (in Chinese)
    [5] ZHOU Meng-bo. New techniques in construction of WuhuChangjiang River Bridge[J]. Bridge Construction, 2000(2): 12-19. (in Chinese)
    [6] XI N Bin, LI De-kung, LI Xiu-hua. Construction techniquesfor integral steel truss girder block of Caiyuanba ChangjiangRiver Bridge in Chongqing[J]. Bridge Construction, 2007(6): 56-60. (in Chinese)
    [7] LI U Yong-jian, LI U Jian, ZHU Ming. Static and dynamicmodel design of the total bridge of double-deck andthree maintrusses steel bridge with rigid cable[J]. Journal ofArchitecture and Civil Engineering, 2008, 25(1): 84-87. (in Chinese)
    [8] LI U Yong-jian, ZHANG Jun-guang, HUANG Jian-chao. Test model of whole bridge of double-deck and three maintrusses steel bridge with rigid cable[J]. Journal of Architectureand Civil Engineering, 2008, 25(3): 61-65. (in Chinese)
    [9] PENG Zheng-hua. Study on crucial technique of three maintrusses steel bridge with rigid cable[D]. Shanghai: TongjiUniversity, 2007. (in Chinese)
    [10] ZHAO Yu, HE Shuan-hai, SONG Yi-fan. Evaluation method-ology for existing truss-cable composite continuous steelbridge[J]. Journal of Chang an University: Natural ScienceEdition, 2005, 25(5): 47-50. (in Chinese)
    [11] ZHAO Yu, HE Shuan-hai. Evaluation for existing truss-cablecomposite continuous steel bridge based on stress releasemethod[J]. Journal of Chang an University: Natural ScienceEdition, 2006, 26(5): 40-42, 47. (in Chinese)
    [12] CHEN Wan-chun, ZHENG Xiao-yan, HAO Xian-wu, et al. Performance si mulation of existing continuous steeltruss bridges after beeing strengthened[J]. Journal ofChang an University: Natural Science Edition, 2006, 26(1): 43-48. (in Chinese)
  • 加载中
图(26)
计量
  • 文章访问数:  259
  • HTML全文浏览量:  73
  • PDF下载量:  451
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-01-23
  • 刊出日期:  2009-06-25

目录

    /

    返回文章
    返回