留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

动荷载下路桥过渡段双线路基动力响应特性

刘升传 吴立坚 宋二祥

刘升传, 吴立坚, 宋二祥. 动荷载下路桥过渡段双线路基动力响应特性[J]. 交通运输工程学报, 2009, 9(6): 26-31. doi: 10.19818/j.cnki.1671-1637.2009.06.006
引用本文: 刘升传, 吴立坚, 宋二祥. 动荷载下路桥过渡段双线路基动力响应特性[J]. 交通运输工程学报, 2009, 9(6): 26-31. doi: 10.19818/j.cnki.1671-1637.2009.06.006
LIU Sheng-chuan, WU Li-jian, SONG Er-xiang. Dynamic response properties of two-way subgrade in bridge-subgrade transition section under moving load[J]. Journal of Traffic and Transportation Engineering, 2009, 9(6): 26-31. doi: 10.19818/j.cnki.1671-1637.2009.06.006
Citation: LIU Sheng-chuan, WU Li-jian, SONG Er-xiang. Dynamic response properties of two-way subgrade in bridge-subgrade transition section under moving load[J]. Journal of Traffic and Transportation Engineering, 2009, 9(6): 26-31. doi: 10.19818/j.cnki.1671-1637.2009.06.006

动荷载下路桥过渡段双线路基动力响应特性

doi: 10.19818/j.cnki.1671-1637.2009.06.006
基金项目: 

铁道部科技研究开发计划项目 2007G046

详细信息
    作者简介:

    刘升传(1978-), 男, 山东即墨人, 交通运输部公路科学研究院助理研究员, 交通运输部公路科学研究院与清华大学联合培养博士后, 从事路基工程研究

  • 中图分类号: U213.1

Dynamic response properties of two-way subgrade in bridge-subgrade transition section under moving load

More Information
    Author Bio:

    LIU Sheng-chuan (1978-), male, assistant researcher, PhD, +86-10-62079367, liushengchuan@126.com

  • 摘要: 采用有限元方法, 建立了重载铁路路桥过渡段双线路基整体三维模型, 分析了动荷载作用下双线路基动力响应规律。研究发现: 相向移动荷载作用下路基横向上各点的位移曲线呈“W”形状, 路基左右两侧荷载作用面积中心下的位移最大; 路基左侧最大位移要大于右侧最大位移, 点离荷载中心越近, 该点位移波动变化越剧烈。结果表明: 荷载除对其作用一侧的路基位移有影响外, 又加剧了路基另一侧位移; 沿深度方向, 荷载对路基位移的影响逐渐减弱。

     

  • 图  1  路基整体模型

    Figure  1.  Integral model of subgrade

    图  2  路基整体网格模型

    Figure  2.  Integral meshing model of subgrade

    图  3  典型动应力-时间曲线

    Figure  3.  Typical dynamic stress-time curve

    图  4  动应力表示形式

    Figure  4.  Expression form of dynamic stress

    图  5  离桥台背5.0 m路基表面横向各点位移曲线1

    Figure  5.  The first cluster of displacement curves of subgrade surface transverse points with 5.0 m distance from abutment

    图  6  离桥台背5.0 m路基表面横向各点位移曲线2

    Figure  6.  The second cluster of displacement curves of subgrade surface transverse points with 5.0 m distance from abutment

    图  7  离桥台背5.0 m路基表面横向各点位移曲线3

    Figure  7.  The third cluster of displacement curves of subgrade surface transverse points with 5.0 m distance from abutment

    图  8  离桥台背10.0 m路基表面横向各点位移曲线1

    Figure  8.  The first cluster of displacement curves of subgrade surface transverse points with 10.0 m distance from abutment

    图  9  离桥台背10.0 m路基表面横向各点位移曲线2

    Figure  9.  The second cluster of displacement curves of subgrade surface transverse points with 10.0 m distance from abutment

    图  10  离桥台背10.0 m路基表面横向各点位移曲线3

    Figure  10.  The third cluster of displacement curves of subgrade surface transverse points with 10.0 m distance from abutment

    图  11  离桥台背15.0 m路基表面横向各点位移曲线1

    Figure  11.  The first cluster of displacement curves of subgrade surface transverse points with 15.0 m distance from abutment

    图  12  离桥台背15.0 m路基表面横向各点位移曲线2

    Figure  12.  The second cluster of displacement curves of subgrade surface transverse points with 15.0 m distance from abutment

    图  13  离桥台背15.0 m路基表面横向各点位移曲线3

    Figure  13.  The third cluster of displacement curves of subgrade surface transverse points with 15.0 m distance from abutment

    图  14  离桥台背20.0 m路基表面横向各点位移曲线1

    Figure  14.  The first cluster of displacement curves of subgrade surface transverse points with 20.0 m distance from abutment

    图  15  离桥台背20.0 m路基表面横向各点位移曲线2

    Figure  15.  The second cluster of displacement curves of subgrade surface transverse points with 20.0 m distance from abutment

    图  16  离桥台背20.0 m路基表面横向各点位移曲线3

    Figure  16.  The third cluster of displacement curves of subgrade surface transverse points with 20.0 m distance from abutment

    表  1  主要计算参数

    Table  1.   Main computational parameters

    名称 密度/ (kg·m-3) 弹性模量/MPa 泊松比
    过渡段 2 000 120 0.256
    基床表层 1 850 100 0.360
    基床底层 1 800 80 0.360
    路堤底层 1 800 60 0.356
    地基 1 800 60 0.356
    桥台 2 500 20 000 0.200
    2 500 30 000 0.200
    桥墩 2 500 20 000 0.200
    下载: 导出CSV

    表  2  路基表面距路基中心2.5 m处的动应力均值

    Table  2.   Dynamic stress averages of subgrade surface with 2.5 m distance from subgrade center

    距桥台背距离/m 5.5 8.0 10.0 12.0 15.0 16.0 18.0 20.0 21.0 22.0 23.0 24.0 25.0
    动应力均值/kPa 36 36 36 36 36 37 36 37 36 34 32 31 29
    下载: 导出CSV

    表  3  路基表面距路基中心3.0 m处的动应力均值

    Table  3.   Dynamic stress averages of subgrade surface with 2.5 m distance from subgrade center

    距桥台背距离/m 5.25 8.25 10.25 15.25 18.25 20.25 22.25 23.25 24.25 25.25
    动应力均值/kPa 36 36 36 36 36 36 33 31 29 27
    下载: 导出CSV
  • [1] SHAMSABADI A. Three-dimensional nonlinear seismic soil abut ment-foundation-structure interaction analysis of skewed bridges[D]. Los Angeles: University of Southern California, 2007.
    [2] 罗强. 高速铁路路桥过渡段动力学特性分析及工程试验研究[D]. 成都: 西南交通大学, 2003.

    LUO Qiang. Dynamic performance analyses and experiment studyon bridge/approach embankment of high-speed railway[D]. Chengdu: Southwest Jiaotong University, 2003. (in Chinese)
    [3] 陶向华. 路桥过渡段差异沉降控制标准与人车路相互作用[D]. 南京: 东南大学, 2006.

    TAO Xiang-hua. Differential settlement control criterion of bridge-approach and people-vehicle-road interaction[D]. Nanjing: Southeast University, 2006. (in Chinese)
    [4] 张洪亮. 路桥过渡段车路动力学分析及容许差异沉降研究[D]. 西安: 长安大学, 2003.

    ZHANG Hong-liang. Study on the dynamic vehicle-roadway interaction and tolerable differential settlement on the bridge approach[D]. Xi an: Chang an University, 2003. (in Chinese)
    [5] 李献民. 高速铁路加筋过渡段静动力特性数值分析及试验研究[D]. 长沙: 中南大学, 2004.

    LI Xian-min. Numerical analysis andtest study onthe statical and dynamical characteristics of high-speed rail way transition section reinforced by geogrid[D]. Changsha: Central South University, 2004. (in Chinese)
    [6] 陈震. 高速铁路路基动力响应研究[D]. 武汉: 中国科学院武汉岩土力学研究所, 2006.

    CHEN Zhen. Research on dynamic response of high speed rail way[D]. Wuhan: Wuhan Institute of Rock and Soil Mechanics, the Chinese Academy of Sciences, 2006. (in Chinese)
    [7] OKADA K, GHAT AORA G S.Use of cyclic penetration test to estimate the stiffness of railway subgrade[J].NDT and E International, 2002, 35(2):65-74.(in Chinese)
    [8] 罗强, 蔡英, 翟婉明. 高速铁路路桥过渡段的动力学性能分析[J]. 工程力学, 1999, 16 (5): 65-70. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX199905009.htm

    LUO Qiang, CAI Ying, ZHAI Wan-ming. Dynamic perform-ance analyses on high speed rail way bridge-subgrade transi-tion[J]. Engineering Mechanics, 1999, 16 (5): 65-70. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX199905009.htm
    [9] 聂志红, 阮波, 李亮. 铁路道床路基动力响应的参数影响[J]. 交通运输工程学报, 2004, 4 (1): 34-37. http://transport.chd.edu.cn/article/id/200401009

    NIE Zhi-hong, RUAN Bo, LI Liang. Dynamic response parameters of railway ballast-subgrade[J]. Journal of Traffic and Transportation Engineering, 2004, 4 (1): 34-37. (in Chinese) http://transport.chd.edu.cn/article/id/200401009
    [10] 梁波, 罗红, 孙常新. 高速铁路振动荷载的模拟研究[J]. 铁道学报, 2006, 28 (4): 89-94. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB200604018.htm

    LI ANG Bo, LUO Hong, SUN Chang-xin. Simulated study on vibration load of high speed rail way[J]. Journal of the China Rail way Society, 2006, 28 (4): 89-94. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB200604018.htm
    [11] 马伟斌. 既有线提速基床与道床相互影响的研究[D]. 北京: 中国铁道科学研究院, 2006.

    MA Wei-bin. Research of interaction between the subgrade bed and the ballast bed on existing speed-raising railways[D]. Beijing: China Academy of Rail way Sciences, 2006. (in Chinese)
  • 加载中
图(16) / 表(3)
计量
  • 文章访问数:  563
  • HTML全文浏览量:  95
  • PDF下载量:  299
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-07-25
  • 刊出日期:  2009-12-25

目录

    /

    返回文章
    返回