Mechanical responses of thin-layer asphalt concrete utilized in bridge deck pavement
-
摘要: 采用ABAQUS有限元分析软件, 建立水泥混凝土箱梁桥与工字梁桥三维整体有限元模型, 分别研究了不同厚度薄层沥青混凝土铺装层在车辆荷载和温度荷载作用下的力学响应, 以及铺装层自重对桥梁结构内力的影响。研究结果表明: 在车辆荷载作用下, 铺装层厚度由4 cm增加至12 cm时, 箱梁桥与工字梁桥铺装层最大竖向剪应力分别增长了约72%与40%, 因此, 薄层铺装能够降低层内竖向剪应力水平, 有利于缓解车辙病害的发展; 在温度荷载作用下, 铺装层厚度对层内拉应力及层底剪应力的影响并不明显, 力学指标基本处于同一水平; 在重力荷载作用下, 厚度为4 cm的薄层铺装相对于12 cm的铺装层能够分别降低箱梁桥桥体内部最大Mises应力及最大主拉应力19.62%与17.70%, 而对于工字梁桥而言, 能够分别降低应力水平13.79%与10.16%, 从而改善了桥梁结构受力状况。可见, 薄层沥青混凝土应用于桥面铺装具有良好的力学可行性, 在综合考虑环境与材料性能的基础上可在实际工程中推广应用。Abstract: Thin-layer asphalt concrete was paved on cement concrete bridge, finite element analysis software ABAQUS was utilized to build the 3D models of box girder bridge and flanged girder bridge respectively, and the mechanical responses of pavementes with different thicknesses under traffic and thermal loads were analyzed.In addition, the effect of pavement gravity on bridge structure was studied.The result indicates that the maximum vertical shear stresses in box girder bridge and flanged girder bridge increase by about 72% and 40% respectively under vehicle load when pavement thickness increases from 4 cm to 12 cm.Thus, the possibility of the rutting occurrence decreases because of the application of thin-layer pavement.The influence of pavement thickness on the tensile stress is not obvious under thermal load, and each mechanical index is at the similar level.Under the gravity of pavement, the maximum Mises stress and principle tensile stress in box girder bridge respectively decrease by 19.62% and 17.70% by decreasing pavement thickness from 12 cm to 4 cm.At the same condition, the stress levels in flanged girder bridge respectively decrease by 13.79% and 10.16%, and the stress distribution in bridge structure is meliorated.Therefore, thin-layer asphalt concrete is feasible to be utilized in bridge deck pavement when environment condition and material performance are considered in actual engineering.
-
表 1 材料及结构参数
Table 1. Material and structure parameters
材料 模量 泊松比 密度/ (kg·m-3) 钢筋水泥混凝土 36 GPa 0.166 7 2 551 防水混凝土铺装 30 GPa 0.166 7 2 551 沥青混凝土 2 500 MPa 0.35 2 300 表 2 车辆荷载主要技术指标
Table 2. Main technical indices of vehicle load
项目 技术指标 前轮着地宽度及长度 0.3 m×0.2 m 前轴重力标准值/kN 30 前轮胎压计算值/MPa 0.25 中、后轮着地宽度及长度 0.6 m×0.2 m 中轴重力标准值 2×120 kN 后轴重力标准值 2×140 kN 中轮胎压计算值/MPa 0.50 后轮胎压计算值/MPa 0.58 -
[1] 曹卫东, 沈建荣, 韩恒春. 超薄沥青混凝土面层技术研究及应用简介[J]. 石油沥青, 2005, 19 (4): 56-59. https://www.cnki.com.cn/Article/CJFDTOTAL-OILE200504014.htmCAO Wei-dong, SHEN Jian-rong, HAN Heng-chun. Introduction of technology of ultra-thin asphalt friction course[J]. Petroleum Asphalt, 2005, 19 (4): 56-59. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-OILE200504014.htm [2] 李大鹏. 超薄沥青混凝土面层性能研究[D]. 南京: 东南大学, 2007.LI Da-peng. The research on the performance of ultra-thin asphalt concrete pavement[D]. Nanjing: Southeast University, 2007. (in Chinese) [3] 张磊, 张占军, 黄卫, 等. 基于车轮-桥面接触耦合特性的铺装层受力分析方法[J]. 中国公路学报, 2009, 22 (4): 50-56. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200904010.htmZHANG Lei, ZHANG Zhan-jun, HUANG Wei, et al. Mechanics analysis method for deck pavement based on tire-deck contact coupling characteristic[J]. China Journal of Highway and Transport, 2009, 22 (4): 50-56. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200904010.htm [4] 钱振东, 罗剑, 敬淼淼. 沥青混凝土钢桥面铺装方案受力分析[J]. 中国公路学报, 2005, 18 (2): 61-64. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL20050200B.htmQI AN Zhen-dong, LUO Jian, JI NG Miao-miao. Mechanical analysis of asphalt concrete paving projects on steel bridge deck[J]. China Journal of Highway and Transport, 2005, 18 (2): 61-64. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL20050200B.htm [5] 郝增恒, 阳君, 李林波. 大跨径钢桥铺装组合结构疲劳性能研究[J]. 公路交通科技, 2010, 27 (3): 98-102. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201003020.htmHAO Zeng-heng, YANG Jun, LI Lin-bo. Study on fatigue performance of combinational deck paving structure of long-span steel bridge[J]. Journal of Highway and Transportation Research and Development, 2010, 27 (3): 98-102. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201003020.htm [6] 徐伟, 李智, 张肖宁. 子模型法在大跨径斜拉桥桥面结构分析中的应用[J]. 土木工程学报, 2004, 37 (6): 30-34. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200406005.htmXU Wei, LI Zhi, ZHANG Xiao-ning. Application of submodeling method for analysis for deck structure of diagonal cable-stayed bridge withlong span[J]. China Civil Engineering Journal, 2004, 37 (6): 30-34. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200406005.htm [7] CHUNG W, SOTELINO E D. Three-dimensional finite element modeling of composite girder bridges[J]. Engineering Structures, 2006, 28 (1): 63-71. [8] KWASNIEWSKI L, LI Hong-yi, WEKEZERJ, et al. Finite element analysis of vehicle-bridge interaction[J]. Finite Elements in Analysis and Desigh, 2006, 42 (11): 950-959. [9] GALVI N P, DOMI NGUEZ J. Dynamic analysis of a cable-stayed deck steel arch bridge[J]. Journal of Constructional Steel Research, 2007, 63 (8): 1024-1035. [10] 于颖. 水泥混凝土桥桥面铺装受力机理分析[D]. 重庆: 重庆交通大学, 2008.YU Ying. Mechanics analysis of concrete bridge deck pavement[D]. Chongqing: Chongqing Jiaotong University, 2008. (in Chinese) [11] JTG D60—2004, 公路桥涵设计通用规范[S].JTG D60—2004, general code for design of highway bridges and culverts[S]. (in Chinese) [12] 吴一鸣. 大跨径钢桥桥面铺装力学深入研究[D]. 南京: 东南大学, 2005.WU Yi-ming. Mechanics analysis about asphalt paving on long-span steel bridge[D]. Nanjing: Southeast University, 2005. (in Chinese) [13] 李雪连, 陈宇亮, 周志刚, 等. 正交异性钢桥面新型复合铺装结构研究[J]. 公路交通科技, 2010, 27 (1): 17-21. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201001005.htmLI Xue-lian, CHEN Yu-liang, ZHOU Zhi-gang, et al. New composite pavement structure on orthotropic steel bridge deck[J]. Journal of Highway and Transportation Research and Development, 2010, 27 (1): 17-21. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201001005.htm [14] 王光辉, 韦成龙, 李斌, 等. 大跨度桥梁桥面铺装温度效应仿真分析[J]. 湖南理工学院学报: 自然科学版, 2007, 20 (4): 83-87. https://www.cnki.com.cn/Article/CJFDTOTAL-YYSF200704021.htmWANG Guang-hui, WEI Cheng-long, LI Bin, et al. The emulation analysis to the temperature effect of the bridge deck pavement of long-span bridge[J]. Journal of Hunan Institute of Science and Technology: Natural Sciences, 2007, 20 (4): 83-87. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YYSF200704021.htm [15] 徐勤武, 王虎, 胡长顺 . 混凝土桥水泥铺装层温度应力研究[J]. 中南公路工程, 2005, 30 (3): 65-72. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGL200503017.htmXU Qin-wu, WANG Hu,HU Chang-shun . Thermally induced stresses in concrete pavement on concrete bridge[J]. Central South Highway Engineering, 2005, 30 (3): 65-72. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGL200503017.htm