Motion control model of supercavitating vehicle considering time-delay effect of supercavitation
-
摘要: 基于超空泡的独立扩张原理, 考虑了超空泡的时间延迟特性, 在随体坐标系中建立航行器尾部中心指向超空泡中心的空间矢量, 提出了可以描述超空泡航行器机动航行特性的运动控制模型。在充分考虑超空泡航行器巡航阶段纵平面为弱机动的基础上, 对运动模型进行了无横滚匀速定深直航简化。所得航行器空间运动模型既考虑了超空泡的延迟效应诱发的空泡脱体现象, 也兼顾了巡航阶段运动特点的描述, 模型封闭, 便于工程应用, 可作为航行器机动运动控制的对象基础。Abstract: Based on the cavitation theory of unattached expansion, the time-delay effect of supercavitation was considered, the vector from the empennage center of maneuverable supercavitating vehicle to supercavitation center in accompanying reference frame was established, and a motion control model of the vehicle was presented, which could describe the maneuverable motion property of the vehicle.Convenient for practical application, the model was simplified to straight-and-level flight without roll based on investigating the motion characteristics of the vehicle.The model is close and applied.It adequately considers the time-delay effect of supercavitation, accurately describes the motion characteristics of the vehicle at cruise phase and is the base of designing the motion control system of the vehicle.
-
[1] KIRSCHNER I N, KRING D C, STOKES A W, et al. Control strategies for supercavitating vehicles[J]. Journal of Vibration and Control, 2002, 8 (2): 219-242. doi: 10.1177/107754602023818 [2] KIRSCHNER I N, ROSENTHAL B J, UHLMAN J S. Simplified dynamical systems analysis of supercavitating highspeed bodies[C]//CAV. 5th International Symposium on Cavitation. Osaka: CAV, 2003: 1-8. [3] RAND R, PRATAP R, RAMANI D, et al. Impact dynamics of a supercavitating underwater projectile[C]//ASME. Proceedings of DETC'97. Sacramento: ASME, 1997: 1-11. [4] DZIELSKI J, KURDILA A. A benchmark control problem for supercavitating vehicles and an initial investigation of solutions[J]. Journal of Vibration and Control, 2003, 9 (7): 791-804. doi: 10.1177/1077546303009007004 [5] EUTENEUER E A. Further studies into the dynamics of a supercavitating torpedo[D]. Twin Cities: University of Minnesota, 2003. [6] 冯光, 颜开. 超空泡航行体水下弹道的数值计算[J]. 船舶力学, 2005, 9 (2): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-CBLX200502000.htmFENG Guang, YAN Kai. Numerical calculation of underwater trajectory of supercavitating bodies[J]. Journal of Ship Mechanics, 2005, 9 (2): 1-8. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CBLX200502000.htm [7] 孙尧, 赵新华, 莫宏伟. 水下超高速航行体的动力学建模及控制问题研究[J]. 哈尔滨工程大学学报, 2008, 29 (2): 144-150. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBG200802009.htmSUN Yao, ZHAO Xin-hua, MO Hong-wei. Dynamic modeling and control of underwater high-speed vehicles[J]. Journal of Harbin Engineering University, 2008, 29 (2): 144-150. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HEBG200802009.htm [8] LI Dai-jin, LUO Kai, ZHANG Yu-wen, et al. Studies on fixed-depth control of supercavitating vehicles[J]. Acta Automatica Sinica, 2010, 36 (3): 421-426. [9] 罗凯, 党建军, 王育才, 等. 超高速水下航行器纵平面运动特性分析[J]. 鱼雷技术, 2007, 15 (5): 37-40. https://www.cnki.com.cn/Article/CJFDTOTAL-YLJS200705010.htmLUO Kai, DANGJian-jun, WANG Yu-cai, et al. Motion characteristics on vertical plane of superspeed underwater vehicle[J]. Torpedo Technology, 2007, 15 (5): 37-40. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YLJS200705010.htm [10] SEMENENKO V N. Dynamic processes of supercavitation and computer simulation[R]. Brussels: Von Karman Institute, 2001. [11] 罗凯, 段鹏, 高亚强. 一种新型的超空泡航行器流体动力布局[J]. 计算机仿真, 2009, 26 (11): 38-40, 101. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJZ200911013.htmLUO Kai, DUAN Peng, GAO Ya-qiang. A hydrodynamic layout of a new type supercavitating vehicle[J]. Computer Simulation, 2009, 26 (11): 38-40, 101. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSJZ200911013.htm