-
摘要: 将地铁通道和高峰时段客流描述成排队系统, 在分析参数特性的基础上, 构建了排队优化模型, 将行人服务水平的概念引入到地铁人行通道通行能力的计算中, 得出了一套新的地铁通道宽度取值方法。建立仿真模型对给定到达和服务规律的排队优化理论模型进行了验证, 该模型可模拟任意一种到达和服务规律的通道排队系统。比较结果表明: 排队优化模型和仿真模拟在最低服务等级下得出的结果均与现有设计规范得出的值比较接近, 但随着设定服务等级的提高, 前2种方法计算出的通道宽度值呈现较明显的同步增长趋势, 而现有规范得出的值呈水平趋势。Abstract: Subway footway and passenger flux were described as a queuing system at rush hours, a queuing optimization model was built based on the analysis of parameter characteristics, and a new approach for determining subway footway width was developed by combining the level of service for passengers with the calculation of subway footway capacity.A simulation model was proposed to testify the theoretical model above, which was capable of simulating the queuing system with any arrival process and any distribution of service time.Comparison result shows that the results of queuing optimization model and stochastic simulation at the lowest level of service are both close to the values of existing design norm, but with the improvement of service level, the values calculated by the former two methods show a remarkable trend of simultaneous growth, while those derived from the existing design norm show a level trend.
-
Key words:
- subway footway /
- level of service /
- queuing theory /
- optimization model
-
表 1 服务等级
Table 1. Service levels
参数 服务等级 A B C D E S/m2 3.5 2.8 1.7 1.1 0.7 μ/ (m·s-1) 1.34 1.28 1.22 1.19 1.06 δ/ (m·s-1) 0.03 0.03 0.02 0.02 0.07 表 2 通道宽度对比
Table 2. Comparison among subway footway width values
客流量/ (人·h-1) 计算类型 设计宽度/m A B C D E 5 000 排队模型 4.316 2 3.765 2 3.254 7 2.123 8 1.014 6 仿真模拟 4.222 1 3.776 2 2.942 4 2.367 2 0.944 1 现有规范 1.000 0 1.000 0 1.000 0 1.000 0 1.000 0 10 000 排队模型 6.432 5 5.730 5 4.247 7 3.427 1 2.029 2 仿真模拟 6.333 0 5.664 3 4.413 6 3.550 5 1.888 2 现有规范 2.000 0 2.000 0 2.000 0 2.000 0 2.000 0 15 000 排队模型 10.448 7 9.395 8 6.003 7 4.940 6 3.043 9 仿真模拟 10.555 0 9.440 5 5.884 8 4.734 3 2.832 3 现有规范 3.000 0 3.000 0 3.000 0 3.000 0 3.000 0 -
[1] GB50157—2003, 地铁设计规范[S].GB50157—2003, code for design of metro[S]. (in Chinese) [2] FRUIN J J. Pedestrian planning and design[C]//American Institute of Architects. Metropolitan Association of Urban Designers and Environmental Planners. New York: ASCE, 1971: 4-6. [3] TRB. Transit capacity and quality of service manual[R]. Washington DC: TRB, 2003. [4] WEN Ya, YAN Ke-fei, YU Chao-wei. Level of service standards for pedestrian facilities in Shanghai metro stations[C]//ASCE. International Conference on Transportation Engineering 2007. Reston: ASCE, 2007: 578-583. [5] 谭方彤. 商店营业厅顾客人均使用面积计算方法的研究[J]. 华中建筑, 2006, 24 (10): 100-101. https://www.cnki.com.cn/Article/CJFDTOTAL-HZJZ200610031.htmTAN Fang-tong. The calculation method of the area per customer of the store business hall[J]. Huazhong Architecture, 2006, 24 (10): 100-101. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HZJZ200610031.htm [6] GB/T10000—1988, 中国成年人人体尺寸[S].GB/T10000—1988, body size of Chinese adults[S]. (in Chinese) [7] 龚晓岚, 魏中华. 行人交通流自由速度模型研究[J]. 北京工业大学学报, 2009, 35 (4): 493-497. https://www.cnki.com.cn/Article/CJFDTOTAL-BJGD200904014.htmGONG Xiao-lan, WEI Zhong-hua. Research on distribution model of pedestrian traffic[J]. Journal of Beijing University of Technology, 2009, 35 (4): 493-497. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BJGD200904014.htm [8] 刑小玉, 王永学. 关于G/G/1排队模型中排队长度的积分[J]. 南开大学学报: 自然科学版, 2010, 43 (1): 5-10. https://www.cnki.com.cn/Article/CJFDTOTAL-NKDZ201001004.htmXING Xiao-yu, WANG Yong-xue. The integral of the queue length process in a G/G/1 model[J]. Acta Scientiarum Naturalium Universitatis Nankaiensis, 2010, 43 (1): 5-10. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-NKDZ201001004.htm [9] 章慧健, 仇文革, 高扬. 用MATLAB工具箱优化铁路四线隧道断面设计[J]. 路基工程, 2010 (1): 47-49. https://www.cnki.com.cn/Article/CJFDTOTAL-LJGC201001020.htmZHANG Hui-jian, QIU Wen-ge, GAO Yang. Optimization of cross-section design of four-track railway tunnel with MATLAB toolbox[J]. Subgrade Engineering, 2010 (1): 47-49. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LJGC201001020.htm [10] 柯婷. 基于MATLAB程序的GI/GI/c/K/∞系统的建模与仿真[J]. 沈阳理工大学学报, 2007, 26 (1): 87-90. https://www.cnki.com.cn/Article/CJFDTOTAL-SGXY200701023.htmKE Ting. The modeling and simulation of queuing system GI/GI/c/K/∞ based on MATLAB[J]. Transactions of Shenyang Ligong University, 2007, 26 (1): 87-90. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SGXY200701023.htm