-
摘要: 为提高整个路网的运行效率, 建立了一个非线性规划模型, 进一步得出相应的非线性模糊规划模型, 根据相邻交叉口交通流大小和方向的不同, 通过动态模糊控制手段, 采用弹性信号周期和最大隶属度原则, 合理地动态分配交叉口信号相位。驾驶人通过对路径察觉, 获得最小察觉阻抗路径, 并与智能交通系统提供的各路径阻抗进行对比, 选择最大满意度的路径。分析结果表明: 动态模糊控制和模糊决策法与最短路径法的交通流分配结果基本一致, 模糊最优控制使得信号交叉口的控制效用提高50%以上, 且动态模糊控制和模糊决策法更能反映人的行为, 是一种有效的交通控制方法。Abstract: In order to improve the operational efficiency of whole traffic network, a nonlinear programming model was established, and the corresponding nonlinear fuzzy programming model was further obtained by using dynamic fuzzy control methods.According to the magnitudes and directions of adjacent intersection traffic flows, intersection signal dynamic phases were reasonably allocated by using different elastic signal periods and maximum membership degree principle.Based on the observation path of driver, the minimum detection impedance path was obtained, the impedance was compared with the path impedances of intelligent transportation system, and the greatest satisfaction path was chosen.Analysis result indicates that the traffic assignment based on dynamic fuzzy control and fuzzy decision making method is consistent with the shortest path method, and the control effectiveness of signal intersection increases by 50% or more based on fuzzy optimal control, dynamic fuzzy control and fuzzy decision making method can accurately reflect human behavior, and is an effective measurement for signal intersection control.
-
表 1 OD对之间的需求和路径
Table 1. Traffic demands and paths between origins and destinations
OD 需求/(veh·h-1) OD对之间的路径 (A, J) 1 500 1-2-5-10、1-4-7-10、1-4-9-12、3-6-7-10、3-6-9-12、3-8-11-12 (C, H) 2 000 23-24-3-8、23-4-19-8、23-4-9-14、5-18-19-8、5-18-9-14、5-10-13-14 (F, A) 2 020 20-23-24、18-21-24、18-19-22 (I, C) 1 000 16-21-2、16-7-20、12-15-20 (J, D) 2 500 13-14-17、13-16-19、15-18-19 表 2 简单交通路网的静态属性
Table 2. Static attributes of simple traffic network
路段 1、24 2、23 3、22 4、21 5、20 6、19 7、18 8、17 9、16 10、15 11、14 12、13 长度/km 2.90 3.00 2.88 1.65 4.00 1.94 1.28 3.00 1.97 2.72 3.00 3.20 容量/(veh·h-1) 2 500 2 500 3 000 4 500 2 500 4 500 4 500 3 000 4 500 2 500 3 000 3 000 自由流速度/(km·h-1) 20 20 30 50 20 50 50 30 50 20 30 30 车道数 2 2 2 3 2 3 3 2 3 2 2 2 表 3 道路平均速度与流量关系
Table 3. Relationship between vehicle average speeds and path flows
流量比容量 ≤0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 ≥1.3 平均速度比自由流速度 1 34/35 31/35 24/35 19/35 14/35 9/35 4/35 3/35 2/35 0 表 4 交通分配结果
Table 4. Results of traffic assignment
veh·h-1 路段 1 2 3 4 5 6 7 8 9 10 11 12 模糊决策法 1 504 1 016 4 3 544 8 4 1 504 2 044 8 1 504 0 8 最短路径法 1 504 1 012 4 3 548 4 4 1 508 2 044 8 1 504 0 8 路段 13 14 15 16 17 18 19 20 21 22 23 24 模糊决策法 8 8 2 564 1 020 4 4 616 4 612 8 3 060 4 2 044 2 048 最短路径法 8 8 2 564 1 020 4 4 616 4 612 8 3 060 4 2 044 2 048 表 5 交叉口停车总延误
Table 5. Total delays of vehicle parkings at intersection
交叉口 B D F I E′ 一般非线性规划动态控制/s 8.810 7×107 4.408 6×107 5.545 9×107 3.951 0×105 6.542 9×108 模糊非线性规划动态控制/s 5.385 8×107 2.694 9×107 3.390 0×107 2.437 9×105 4.359 1×108 模糊动态规划效用提高/% 63.59 63.59 63.60 62.06 50.10 -
[1] LOTAN T. Effects of familiarity on route choice behavior in the presence of information[J]. Transportation Research Part C: Emerging Technologies, 1997, 5(3/4): 225-243. [2] LOTAN T. Integration of fuzzy numbers corresponding to static knowledge and dynamic information[J]. Fuzzy Sets and Systems, 1997, 86(3): 335-344. doi: 10.1016/S0165-0114(96)00006-1 [3] TOLEDO T, MUSICANT O, LOTAN T. In-vehicle data recorders for monitoring and feedback on drivers behavior[J]. Transportation Research Part C: Emerging Technologies, 2008, 16(3): 320-331. doi: 10.1016/j.trc.2008.01.001 [4] PRATO C G, TOLEDO T, LOTAN T, et al. Modeling the behavior of novice young drivers during the first year after licensure[J]. Accident Analysis and Prevention, 2010, 42(2): 480-486. doi: 10.1016/j.aap.2009.09.011 [5] 许伦辉, 习利安, 衷路生. 孤立交叉口多相位自适应模糊控制及其神经网络实现[J]. 中国公路学报, 2005, 18(3): 90-93. doi: 10.3321/j.issn:1001-7372.2005.03.018XU Lun-hui, XI Li-an, ZHONG Lu-sheng. Adaptive multiphase fuzzy control of single intersection based on neural network[J]. China Journal of Highway and Transport, 2005, 18(3): 90-93. (in Chinese) doi: 10.3321/j.issn:1001-7372.2005.03.018 [6] 张卫钢, 刘亚萍, 靳瑾, 等. 十字口4相位信号灯模糊控制模型设计与仿真[J]. 长安大学学报: 自然科学版, 2008, 28(4): 83-86. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL200804022.htmZHANG Wei-gang, LIU Ya-ping, JIN Jin, et al. Design and simulation of traffic-light fuzzy control model with four phases at intersection[J]. Journal of Chang'an University: Natural Science Edition, 2008, 28(4): 83-86. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL200804022.htm [7] 温凯歌, 曲仕茹, 张玉梅. 基于模糊逻辑的高速公路入口匝道控制方法[J]. 中国公路学报, 2007, 20(6): 100-104. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200706019.htmWEN Kai-ge, QU Shi-ru, ZHANG Yu-mei. Method for freeway on-ramp control based on fuzzy logic[J]. China Journal of Highway and Transport, 2007, 20(6): 100-104. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200706019.htm [8] HENN V. Fuzzy route choice model for traffic assignment[J]. Fuzzy Sets and Systems, 2000, 116(1): 77-101. doi: 10.1016/S0165-0114(99)00039-1 [9] HENN V. What is the meaning of fuzzy costs in fuzzy traffic assignment models?[J]. Transportation Research Part C: Emerging Technologies, 2005, 13(2): 107-119. [10] HENN V, OTTOMANELLI M. Handling uncertainty in route choice models: from probabilistic to possibilistic approaches[J]. European Journal of Operational Research, 2006, 175(3): 1526-1538. [11] MARKOSE S, ALENTORN A, KOESRINDARTOTO D, et al. A smart market for passenger road transport (SMPRT) congestion: an application of computational mechanism design[J]. Journal of Economic Dynamics & Control, 2007, 31(6): 2001-2032.