-
摘要: 应用计算机仿真分析法、振动理论求解法与小孔扩张理论, 结合九江大桥事故现场情况, 研究了振动桩施工对周围地基土的影响范围。采用计算机仿真分析法, 模拟振动荷载作用下地基土的横向位移, 根据位移的递减规律得出其影响范围为20 m; 根据振动理论, 考虑振动波在地基土中的衰减因素, 得出其影响范围为15 m; 利用小孔扩张理论, 研究了孔径与地基土弹塑性区范围的关系, 得出其弹性区边界, 即影响范围为23 m。3种计算方法所得安全距离范围在15~23 m, 实际施工中须综合考虑打桩速率、打桩顺序及打桩工艺等因素, 综合考虑理论计算结果、工程现场实际情况和已有的实测结果, 工程处理安全范围选用18 m。事故处理平台振动下沉桩基础施工中的振动波没有引起周边环境的进一步坍塌, 因此, 安全距离范围合理。Abstract: The influence range of damaged bridge during vibropile construction on surrounding soil was studied in the actual accident scene of Jiujiang Bridge by using vibration theory, cavity expansion theory and simulation analysis.The lateral displacement of foundation soil under vibration load was simulated, and the influence range was 20 m according to the diminish law of displacement.According to vibration theory, the attenuation of vibration wave in foundation soil was considered, and the influence range was 15 m.Using cavity expansion theory, the relationship between the aperture and the plastic zone for the soil was analyzed, and the influence range was 23 m.The influence ranges were between 15 m and 23 m.The factors such as piling rate, piling order and piling process were considered under the construction, according to the theoretical computation results, the processing scheme of actual project and measure result, the intended safe distance is 18 m.Applied result shows that the vibration wave caused by the construction of accident treatment platform's vibropile foundation, does not cause further collapse in surrounding environment, so the influence range of theoretical analysis is scientific and reasonable.
-
Key words:
- foundation engineering /
- damaged bridge /
- vibropile /
- theoretical calculation /
- simulation analysis
-
表 1 地基土能量吸收系数
Table 1. Energy absorption factor of foundation soil
土质情况 α/m-1 松软饱和粉细砂、亚粘土、轻亚粘土 0.01~0.03 很湿的亚粘土、粘土 0.04~0.06 稍湿和干的轻亚粘土、亚粘土 0.07~0.10 表 2 淤泥的物理力学性质
Table 2. Physical and mechanics properties of sullage
特征值 基本物理性指标 液塑限指标 直剪试验结果 固结试验结果 渗透系数Kv/(cm·s-1) 含水率ω/% 湿密度ρ/(g·cm-3) 孔隙比e 液限ωL/% 塑限ωP/% 塑性指数IP 液性指数IL 粘聚力c/kPa 内摩擦角φ/(°) 压缩系数av/MPa-1 压缩模量Es/MPa 最大值 55.3 1.75 1.59 40.8 28.0 13.7 3.02 7.0 9.3 1.10 2.84 6.0×10-8 最小值 47.4 1.58 1.29 33.4 21.3 10.1 1.75 1.0 1.8 0.78 1.97 3.0×10-8 平均值 51.0 1.68 1.42 37.4 25.3 12.1 2.18 3.3 5.0 0.94 2.35 4.5×10-8 表 3 模型主要参数
Table 3. Main parameters of model
名称 弹性模量E/MPa 泊松比μ 粘聚力c/kPa 内摩擦角φ/(°) 振动桩桩头 36 500.00 0.167 地基土 2.84 0.350 9.0 14.8 表 4 塑性区范围
Table 4. Plastic zone
桩径/m E/Cu 60 100 150 380 0.8 3.58 4.62 5.66 9.00 1.0 4.47 5.77 7.07 11.25 1.2 5.37 6.93 8.49 13.51 1.5 6.71 8.66 10.61 16.88 1.8 8.05 10.39 12.73 20.26 2.0 8.94 11.55 14.14 22.51 表 5 计算结果对比
Table 5. Comparison of calculating results
理论方法 目的 结果/m 有限元仿真 建立仿真模型, 分析地基土的影响范围 20 振动理论 分析弹性波在地基土中的衰减 15 小孔扩张理论 考虑不同桩基和不同地基土的塑性区范围 23 -
[1] 施峰. PHC管桩荷载传递的试验研究[J]. 岩土工程学报, 2004, 26(1): 95-99. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200401018.htmSHI Feng. Experimental reasearch on load transfer mechanism of pretensioned high trength spun concrete pile[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(1): 95-99. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200401018.htm [2] 瞿海雁, 李国强, 孙建运, 等. 侧向冲击作用下圆钢管混凝土构件的数值模拟分析[J]. 建筑科学与工程学报, 2010, 27(1): 89-96. https://www.cnki.com.cn/Article/CJFDTOTAL-XBJG201001018.htmQU Hai-yan, LI Guo-qiang, SUN Jian-yun, et al. Numerical simulation analysis of circular concrete-filled steel tube specimen under lateral impact[J]. Journal of Architecture and Civil Engineering, 2010, 27(1): 89-96. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XBJG201001018.htm [3] 王育兴, 孙均. 打桩施工对周围土性及孔隙水压力的影响[J]. 岩石力学与工程学报, 2004, 23(1): 153-158. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200401010.htmWANG Yu-xing, SUN Jun. Influence of pile driving on properties of soils around pile and pore water pressure[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(1): 153-158. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200401010.htm [4] 雷国辉, 赵维炳, 施建勇. 锤击打入桩与土的共同作用分析[J]. 河海大学学报: 自然科学版, 1999, 27(2): 57-59. https://www.cnki.com.cn/Article/CJFDTOTAL-HHDX902.011.htmLEI Guo-hui, ZHAO Wei-bing, SHI Jian-yong. Analysis of interaction between driven pile and soil[J]. Journal of Hohai University: Natural Sciences, 1999, 27(2): 57-59. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HHDX902.011.htm [5] 周炳勤. 小孔扩张理论及其应用[D]. 南京: 东南大学, 2005.ZHOU Bing-qin. The theory of spherical cavity expansion and its application[D]. Nanjing: Southeast University, 2005. (in Chinese) [6] 肖昭然, 张昭, 杜明芳. 饱和土体小孔扩张问题的弹塑性解析解[J]. 岩土力学, 2004, 25(9): 1373-1378. doi: 10.3969/j.issn.1000-7598.2004.09.006XIAO Zhao-ran, ZHANG Zhao, DU Ming-fang. An elastoplastic closed-form approach of cavity expansion in saturated soil based on modified camclay model[J]. Rock and Soil Mechanics, 2004, 25(9): 1373-1378. (in Chinese) doi: 10.3969/j.issn.1000-7598.2004.09.006 [7] 冯忠居, 任文峰, 李晋. 后压浆技术对桩基承载力的影响[J]. 长安大学学报: 自然科学版, 2006, 26(3): 35-38. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL200603008.htmFENG Zhong-ju, REN Wen-feng, LI Jin. Bearing capacity of post-grouting pilefoundation[J]. Journal of Chang'an University: Natural Science Edition, 2006, 26(3): 35-38. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL200603008.htm [8] 刘舜民, 张晓伏. 打桩过程中已打入桩对软土变形的遮拦效应研究[J]. 水电能源科学, 2008, 26(3): 146-149. https://www.cnki.com.cn/Article/CJFDTOTAL-SDNY200803044.htmLIU Shun-min, ZHANG Xiao-fu. Study on sheltering effect of driven piles on soft soil displacement during pile driving[J]. Water Resources and Power, 2008, 26(3): 146-149. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SDNY200803044.htm [9] 刘升传, 吴立坚, 宋二祥. 动荷载下路桥过渡段双线路基动力响应特性[J]. 交通运输工程学报, 2009, 9(6): 26-31. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC200906008.htmLIU Sheng-chuan, WU Li-jian, SONG Er-xiang. Dynamic response properties of two-way subgrade in bridge-subgrade transition section under moving load[J]. Journal of Traffic and Transportation Engineering, 2009, 9(6): 26-31. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC200906008.htm [10] CAVICCHI A, GAMBAROTTA L. Collapse analysis of masonry bridges taking into account arch-fill interaction[J]. Engineering Structures, 2005, 27(4): 605-615. [11] WANG Li-li, YANG Li-ming, HUANG De-jin, et al. An impact dynamics analysis on a new crashworthy device against ship-bridge collision[J]. International Journal of Impact Engineering, 2008, 35(8): 895-904.