-
摘要: 在考虑翻新轮胎主体结构及多元复合材料结合性能基础上, 应用复合材料层合结构和有限元大变形理论, 构建了11R22.5载重车辆翻新轮胎的力学模型、几何模型及有限元模型, 通过轮胎承载性能试验, 对翻新轮胎的承载变形特性进行了仿真分析和试验研究, 并与同品牌、同型号新轮胎进行了对比分析。根据翻新轮胎承载变形特性变化规律, 修正了翻新子午线轮胎变形理论计算公式。分析结果表明: 当充气压力一定时, 随着载荷的增大, 载重车辆翻新轮胎径向变形、侧向变形、接地长度及接地面积均增大, 变形规律近似线性, 而径向刚度变化不大; 当载荷一定时, 随着充气压力的增大, 其径向变形、侧向变形、接地长度及接地面积均减小, 而径向刚度逐渐增大。研究得出翻新轮胎胎体弹性模量较新轮胎胎体大, 且两者之差越大, 说明翻新轮胎的胎体老化程度越高, 其剩余使用寿命越低, 据此可有利于对翻新轮胎胎体老化程度进行预测。Abstract: Considering the main structure and combined performance of multiple composites for renovation tire, the mechanics model, geometric model and finite element model of renovation tire for 11R22.5 loading vehicle were set up, the simulation analysis and experimental research of its deformation characteristics were conducted by using composite laminated structures and finite element large deformation theory, and the same brand and same model new tire was compared. The deformation theory formula of renovation radial tire was amended based on the loading deformation characteristic rules of renovation tire. Analysis result indicates that when inflation pressure is certain, the radial deformation, lateral deformation, grounding length and contact area of renovation tire increase with load increase, its deformations are almost linear, while its radial stiffness hardly changes. When load is certain, the radial deformation, lateral deformation, grounding length and contact area decrease with inflation pressure increase, while its radial stiffness increases. The elastic modulus of renovation tire's carcass is bigger than the one of new tire's carcass. The greater the modulus difference between the two carcass is, the higher the aging degree of renovation tire's carcass is, the lower its remaining service life is, which benefits for predicting the aging properties of renovation tire's carcass.
-
-
[1] 文涛. 轮胎翻新及翻新技术评述[J]. 现代橡胶技术, 2008, 34 (3): 37-42. https://www.cnki.com.cn/Article/CJFDTOTAL-NRPJ202111086.htmWEN Tao. The reviewof tire renovation and renovationtech-nology[J]. Advanced Rubber Technology, 2008, 34 (3): 37-42. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-NRPJ202111086.htm [2] 刘桂生. 我国翻新子午线轮胎的现状及发展建议[J]. 轮胎工业, 2009, 29 (1): 18-20. https://www.cnki.com.cn/Article/CJFDTOTAL-LTGY200901003.htmLI U Gui-sheng. The current situation and the development proposals of China s renovation radial tire[J]. Tire Industry, 2009, 29 (1): 18-20. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LTGY200901003.htm [3] 齐晓杰, 王强. 基于纳米复合技术的翻新轮胎失效仿真研究与探讨[J]. 汽车工艺与材料, 2008 (3): 40-43. https://www.cnki.com.cn/Article/CJFDTOTAL-QCGY200803012.htmQI Xiao-jie, WANG Qiang. Study and discussion about fail-ure simulation of renovationtire based on nanocomposite tech-nology[J]. Automotive Technology and Materials, 2008 (3): 40-43. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QCGY200803012.htm [4] 魏领军, 张利, 景鹏, 等. 用于不平路面仿真的轮胎模型的有限元分析[J]. 橡胶工业, 2009, 56 (11): 683-688. doi: 10.3969/j.issn.1000-890X.2009.11.009WEI Ling-jun, ZHANG Li, JI NG Peng, et al. FEA on tiremodels for simulation on uneven road[J]. China Rubber Industry, 2009, 56 (11): 683-688. (in Chinese) doi: 10.3969/j.issn.1000-890X.2009.11.009 [5] 齐晓杰, 王强. 翻新轮胎失效仿真分析与纳米复合强化技术探讨[J]. 黑龙江工程学院学报: 自然科学版, 2008, 22 (1): 53-56. https://www.cnki.com.cn/Article/CJFDTOTAL-JTGZ200801013.htmQI Xiao-jie, WANG Qiang. Disscusion on failure simulation analysis and nanocomposite enhanced technology of renova-tion tire[J]. Journal of Heilongjiang Institute of Technology: Natural Science Edition, 2008, 22 (1): 53-56. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JTGZ200801013.htm [6] 程钢, 赵国群, 管延锦. 子午线轮胎静态侧倾性能有限元分析及试验研究[J]. 中国机械工程, 2005, 16 (13): 1206-1209. doi: 10.3321/j.issn:1004-132X.2005.13.019CHENG Gang, ZHAO Guo-qun, GUAN Yan-jin. FEA and experimental study on static radial fire camber properties[J]. China Mechanical Engineering, 2005, 16 (13): 1206-1209. (in Chinese) doi: 10.3321/j.issn:1004-132X.2005.13.019 [7] 付春艳, 高行山, 王佩艳, 等. 基于细观力学的缠绕复合材料弹性模量的预测分析[J]. 材料科学与工程学报, 2010, 28 (1): 85-89. https://www.cnki.com.cn/Article/CJFDTOTAL-CLKX201001019.htmFU Chun-yan, GAO Hang-shan, WANG Pei-yan, et al. Elastic modulus prediction of filament winding composites based on micromechanical model[J]. Journal of Materials Science and Engineering, 2010, 28 (1): 85-89. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CLKX201001019.htm [8] 聂忆华, 张起森. 高等级公路沥青路面剪应力分析与应用[J]. 中南大学学报: 自然科学版, 2007, 38 (6): 1232-1238. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD200706038.htmNIE Yi-hua, ZHANG Qi-sen. Analysis and application of shear stress in high-type asphalt pavement[J]. Journal of Central South University: Science and Technology, 2007, 38 (6): 1232-1238. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD200706038.htm [9] 周正峰, 凌建明. 基于ABAQUS的机场刚性道面结构有限元模型[J]. 交通运输工程学报, 2009, 9 (3): 39-44. http://transport.chd.edu.cn/article/id/200903007ZHOU Zheng-feng, LI NG Jian-ming. Finite element model of airport rigid pavement based on ABAQUS[J]. Journal of Traffic and Transportation Engineering, 2009, 9 (3): 39-44. (in Chinese) http://transport.chd.edu.cn/article/id/200903007 [10] 朱兴一, 黄志义, 陈伟球. 基于复合材料细观力学模型的沥青混凝土弹性模量预测[J]. 中国公路学报, 2010, 23 (3): 29-34. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201003006.htmZHU Xing-yi, HUANG Zhi-yi, CHEN Wei-qiu. Elastic modulus prediction of asphalt concrete based on composite material micromechanical model[J]. China Journal of Highway and Transport, 2010, 23 (3): 29-34. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201003006.htm