留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超高性能钢纤维混凝土力学性能

杨松霖 刁波

杨松霖, 刁波. 超高性能钢纤维混凝土力学性能[J]. 交通运输工程学报, 2011, 11(2): 8-13. doi: 10.19818/j.cnki.1671-1637.2011.02.002
引用本文: 杨松霖, 刁波. 超高性能钢纤维混凝土力学性能[J]. 交通运输工程学报, 2011, 11(2): 8-13. doi: 10.19818/j.cnki.1671-1637.2011.02.002
YANG Song-lin, DIAO Bo. Mechanical properties of ultra-high performance steel fiber reinforced concrete[J]. Journal of Traffic and Transportation Engineering, 2011, 11(2): 8-13. doi: 10.19818/j.cnki.1671-1637.2011.02.002
Citation: YANG Song-lin, DIAO Bo. Mechanical properties of ultra-high performance steel fiber reinforced concrete[J]. Journal of Traffic and Transportation Engineering, 2011, 11(2): 8-13. doi: 10.19818/j.cnki.1671-1637.2011.02.002

超高性能钢纤维混凝土力学性能

doi: 10.19818/j.cnki.1671-1637.2011.02.002
基金项目: 

国家自然科学基金项目 50978010

详细信息
    作者简介:

    杨松霖(1982-),内蒙古包头人,中国建筑设计研究院工程师,工学博士,从事建筑结构设计以及高性能混凝土材料研究

  • 中图分类号: U414.18

Mechanical properties of ultra-high performance steel fiber reinforced concrete

More Information
    Author Bio:

    YANG Song-lin(1982-), male, engineer, PhD, +86-10-68302413, yangsl@cadg.cn

  • 摘要: 用端部弯折型、端部扁平型和波浪型3种钢纤维分别配制抗压强度大于100 MPa的超高性能纤维混凝土, 纤维体积掺率分别为1.0%、2.0%、2.5%和3.0%。通过立方体抗压试验和梁抗弯试验, 研究钢纤维形状和体积掺率对超高性能纤维混凝土流动性、抗压强度、抗弯强度、断裂能和弯曲韧度的影响。试验结果表明: 纤维体积掺率为1.0%~2.5%时, 端部扁平型钢纤维超高性能混凝土的抗弯强度、断裂能和弯曲韧度最佳; 纤维体积掺率为3.0%时, 端部弯折型钢纤维超高性能混凝土的抗弯强度、断裂能和弯曲韧度最佳; 纤维体积掺率为2.0%时, 端部扁平型钢纤维超高性能混凝土的施工性能和力学性能最佳; 纤维体积掺率为1.0%~3.0%时, 波浪型钢纤维超高性能混凝土的抗压强度最高, 但抗弯强度和断裂能最低。

     

  • 图  1  钢纤维尺寸

    Figure  1.  Steel fiber sizes

    图  2  测量装置

    Figure  2.  Test equipment

    图  3  抗压强度与体积掺率的关系

    Figure  3.  Relationship between compressive strengthes and doped volume ratios

    图  4  弯曲应力与挠度的关系

    Figure  4.  Relationship between bending stresses and deflections

    图  5  开裂截面

    Figure  5.  Cracked sections

    图  6  抗弯强度与体积掺率的关系

    Figure  6.  Relationship between flexural strengthes and doped volume ratios

    图  7  断裂能与体积掺率的关系

    Figure  7.  Relationship between fracture energies and doped volume ratios

    图  8  弯曲韧度

    Figure  8.  Bending toughnesses

    表  1  物理和力学性能

    Table  1.   Physical and mechanical performances

    下载: 导出CSV

    表  2  骨粒直径和通过率

    Table  2.   Aggregate size and passing rates

    下载: 导出CSV

    表  3  钢纤维力学性能

    Table  3.   Mechanical performances of steel fibers

    下载: 导出CSV

    表  4  超高性能纤维混凝土配比

    Table  4.   UHPFRC proportion

    下载: 导出CSV

    表  5  流动半径

    Table  5.   Fluid radii

    下载: 导出CSV

    表  6  纤维混凝土密度

    Table  6.   Densities of fiber reinforced concrete kg·m-3

    下载: 导出CSV

    表  7  初裂应力和初裂挠度

    Table  7.   Initial crack stresses and initial deflections

    混凝土种类 体积掺率/% 初裂应力/MPa 初裂挠度/mm
    端部弯折型 1.0 8.94 0.089
    2.0 9.81 0.073
    2.5 9.93 0.077
    3.0 10.10 0.103
    端部扁平型 1.0 8.61 0.062
    2.0 9.16 0.078
    2.5 9.43 0.077
    3.0 10.38 0.081
    波浪型 1.0 7.03 0.086
    2.0 7.60 0.075
    2.5 9.02 0.089
    3.0 9.48 0.102
    下载: 导出CSV
  • [1] RICHARD P, CHEYREZY M. Composition of reactive powder concretes[J]. Cement and Concrete Research, 1995, 25 (7): 1501-1511. doi: 10.1016/0008-8846(95)00144-2
    [2] ROSSI P. Development of new cement composite materials for construction[J]. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2005, 219 (1): 67-74. doi: 10.1243/146442005X10193
    [3] SOUTSOS M N, MILLARD S G, KARAISKOS K. Mix design, mechanical properties, and impact resistance of reactive powder concrete (RPC)[C]//FISCHER G, LI VC. International RILEM Workshop on High Performance Fiber Reinforced Cementitious Composites in Structural Applications. Liverpool: RILEMPublications, 2006: 12-22.
    [4] 王发洲, 胡曙光, 丁庆军, 等. 高性能复合道路水泥混凝土的研究[J]. 中国公路学报, 2000, 13 (3): 12-14. doi: 10.3321/j.issn:1001-7372.2000.03.004

    WANG Fa-zhou, HU Shu-guang, DING Qing-jun, et al. Research on the high performance composite road concrete[J]. China Journal of Highway and Transport, 2000, 13 (3): 12-14. (in Chinese) doi: 10.3321/j.issn:1001-7372.2000.03.004
    [5] SCHMIDT M, FEHLI NG E. Ultra-high-performance concrete: research, development and application in Europe[J]. ACI Materials Journal, 2005, 102 (4): 1-32.
    [6] TAKASHI MA H, MIYAGAI K, HASHIDA T, et al. A design approach for the mechanical properties of polypropylene discontinuous fiber reinforced cementitious composites by extrusion molding[J]. Engineering Fracture Mechanics, 2003, 70 (7/8): 853-870.
    [7] El-DIEB A S. Mechanical, durability and microstructural characteristics of ultra-high-strength self-compacting concrete incorporating steel fibers[J]. Materials and Design, 2009, 30 (10): 4286-4292. doi: 10.1016/j.matdes.2009.04.024
    [8] KATRIN H, MARCO V, EMMANUEL D, et al. Development of the mechanical properties of an ultra-high performance fiber reinforced concrete (UHPFRC)[J]. Cement and Concrete Research, 2006, 36 (7): 1362-1370. doi: 10.1016/j.cemconres.2006.03.009
    [9] SOROUSHI ANP, BAYASI Z. Fiber type effects onthe performance of steel fiber reinforced concrete[J]. ACI Materials Journal, 1991, 88 (2): 129-134.
    [10] DI NG Y, ZHANG Y, THOMAS A. The investigation on strength and flexural toughness of fibre cocktail reinforced self-compacting high performance concrete[J]. Construction and Building Materials, 2009, 23 (1): 448-452. doi: 10.1016/j.conbuildmat.2007.11.006
    [11] BANTHIA N, NANDAKUMAR N. Crack growth resistance of hybrid fiber reinforced cement composites[J]. Cement and Concrete Composites, 2003, 25 (1): 3-9. doi: 10.1016/S0958-9465(01)00043-9
    [12] BANTHIA N, TROTTIER J. Concrete reinforced with deformed steel fibers partⅡ: toughness characterisation[J]. ACI Materials Journal, 1995, 92 (2): 146-154.
    [13] TROTTIERJ, BANTHIA N. Toughness characterisation of steel-fiber reinforced concrete[J]. Journal of Materials in Civil Engineering, 1994, 6 (2): 264-289. doi: 10.1061/(ASCE)0899-1561(1994)6:2(264)
    [14] CHEN Lian-rong, MI NDESS S, MORGAN D R. Specimen geometry and toughness of steel-fiber reinforced concrete[J]. Journal of Materialsin Civil Engineering, 1994, 6 (4): 529-541. doi: 10.1061/(ASCE)0899-1561(1994)6:4(529)
    [15] BANTHIA N, TROTTIER J F. Deformed steel fibercementitious matrix bond under compact[J]. Cement and Concrete Research, 1991, 21 (1): 158-168. doi: 10.1016/0008-8846(91)90042-G
    [16] CHAN Y W, CHU S H. Effect of silica fume on steel fiber bond characteristics in reactive powder concrete[J]. Cement and Concrete Research, 2004, 34 (7), 1167-1172. doi: 10.1016/j.cemconres.2003.12.023
    [17] ROSSI P. High performance multimodal fiber reinforced cement composites (HPMFRCC): the LCPC experience[J]. ACI Materials Journal, 1997, 94 (6): 478-483.
    [18] LE T T. Ultra high performance fibre reinforced concrete paving flags[D]. Liverpool: University of Liverpool, 2008.
    [19] YANG Song-lin, MILLARD S G, SOUTSOS M N, et al. Influence of aggregate and curing regime on the mechanical properties of ultra-high performance fiber reinforced concrete (UHPFRC)[J]. Construction and Building Materials, 2009, 23 (6): 2291-2298. doi: 10.1016/j.conbuildmat.2008.11.012
    [20] AFGC, ultra high performance fiber-reinforced concretes, interm recommendations[S].
    [21] GB/T2419—2005, 水泥胶砂流动度测定方法[S].

    GB/T2419—2005, test method for fluidity of cement mortar[S]. (in Chinese)
    [22] GB/T50081—2002, 普通混凝土力学性能试验方法标准[S].

    GB/T50081—2002, standard for test method of mechanical properties on ordinary concrete[S]. (in Chinese)
    [23] CECS 13—2009, 纤维混凝土试验方法标准[S].

    CECS 13—2009, standard test methods for fiber reinforcedconcrete[S]. (in Chinese)
  • 加载中
图(8) / 表(7)
计量
  • 文章访问数:  829
  • HTML全文浏览量:  193
  • PDF下载量:  557
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-11-27
  • 刊出日期:  2011-04-25

目录

    /

    返回文章
    返回