留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

短波波磨状态的轮轨纵向蠕滑力特性

任利惠 谢纲 伍智敏 孙继武 漆晖

任利惠, 谢纲, 伍智敏, 孙继武, 漆晖. 短波波磨状态的轮轨纵向蠕滑力特性[J]. 交通运输工程学报, 2011, 11(2): 24-31. doi: 10.19818/j.cnki.1671-1637.2011.02.005
引用本文: 任利惠, 谢纲, 伍智敏, 孙继武, 漆晖. 短波波磨状态的轮轨纵向蠕滑力特性[J]. 交通运输工程学报, 2011, 11(2): 24-31. doi: 10.19818/j.cnki.1671-1637.2011.02.005
REN Li-hui, XIE Gang, WU Zhi-min, SUN Ji-wu, QI Hui. Longitudinal creep force properties of wheel and rail under short-pitch corrugation state[J]. Journal of Traffic and Transportation Engineering, 2011, 11(2): 24-31. doi: 10.19818/j.cnki.1671-1637.2011.02.005
Citation: REN Li-hui, XIE Gang, WU Zhi-min, SUN Ji-wu, QI Hui. Longitudinal creep force properties of wheel and rail under short-pitch corrugation state[J]. Journal of Traffic and Transportation Engineering, 2011, 11(2): 24-31. doi: 10.19818/j.cnki.1671-1637.2011.02.005

短波波磨状态的轮轨纵向蠕滑力特性

doi: 10.19818/j.cnki.1671-1637.2011.02.005
基金项目: 

国家自然科学基金项目 50905128

详细信息
    作者简介:

    任利惠(1970-), 男, 河北邯郸人, 同济大学副教授, 工学博士, 从事车辆系统动力学研究

  • 中图分类号: U213.42;U211.5

Longitudinal creep force properties of wheel and rail under short-pitch corrugation state

More Information
  • 摘要: 为了对具有简谐波形的钢轨短波波磨进行分组与分析轮轨非稳态滚动接触的纵向蠕滑力特性, 引入了波磨深度指数与波长比, 采用Kalker三维滚动接触理论计算了车轮的纵向蠕滑力, 并与采用稳态滚动理论计算结果进行了对比, 使用频率响应的系统辨识法对纵向蠕滑力的波动分量进行了拟合, 在短波波磨等深度指数条件下, 用波长比的二阶传递函数描述了轮轨纵向蠕滑力的波动分量与稳态理论波动分量之间的关系, 使用传递函数, 由稳态纵向蠕滑力的波动分量计算了非稳态纵向蠕滑力的波动分量, 进而计算了非稳态的纵向蠕滑力。计算结果表明: 在小蠕滑条件下, 由Kalker三维滚动接触理论计算出的纵向蠕滑力的波动分量随着波长比的变化产生明显的幅值衰减和相位滞后, 波长比越大, 幅值衰减越大, 相位滞后越多, 而稳态滚动理论的计算结果与波长比无关。由传递函数和Kalker数值理论计算的纵向蠕滑力的时域波形、频域幅值谱和相位谱相同。

     

  • 图  1  非稳态滚动接触

    Figure  1.  Unsteady rolling contact

    图  2  同波长不同深度的波磨

    Figure  2.  Corrugation waveforms with equal wavelength and different shallowness factors

    图  3  等深度波磨的幅值和波长关系

    Figure  3.  Relationship between amplitudes and wavelengths of corrugations with equal shallowness factor

    图  4  等深度的波磨波形

    Figure  4.  Corrugation waveforms with equal shallowness factor

    图  5  接触斑形状和应力分布

    Figure  5.  Stress distributions and shapes of contact patches

    图  6  α为5.0时的短波波磨的纵向蠕滑力

    Figure  6.  Longitudinal creep forces under short-pitch corrugations when α is 5.0

    图  7  α为10.0时短波波磨的纵向蠕滑力

    Figure  7.  Longitudinal creep forces under short-pitch corrugations when α is 10.0

    图  8  纵向蠕滑力的Nyquist图和传递函数

    Figure  8.  Nyquist figures and transfer functions of longitudinal creep forces

    图  9  等深度多频段波磨的纵向蠕滑力

    Figure  9.  Longitudinal creep forces of multi-frequency corrugations with equal shallowness factor

    图  10  不等深度多频段波磨的纵向蠕滑力

    Figure  10.  Longitudinal creep forces of multi-frequency corrugations with different shallowness factors

    表  1  轮轨参数

    Table  1.   Wheel and rail parameters

    下载: 导出CSV

    表  2  传递函数H的系数

    Table  2.   Parameters of transfer function H

    下载: 导出CSV
  • [1] GRASSIE S L, KALOUSEKJ. Rail corrugation: characteristics, causes and treat ments[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 1993, 207(1): 57-68. doi: 10.1243/PIME_PROC_1993_207_227_02
    [2] 温泽峰. 钢轨波浪形磨损研究[D]. 成都: 西南交通大学, 2006.

    WEN Ze-feng. Study on rail corrugation[D]. Chengdu: Southwest Jiaotong University, 2006. (in Chinese)
    [3] MÜLLER S. Alinear wheel-track model to predict instability and short pitch corrugation[J]. Journal of Sound and Vibration, 1999, 227(5): 899-913. doi: 10.1006/jsvi.1999.2981
    [4] HEMPELMANN K, KNOTHE K. An extended linear model for the prediction of short pitch corrugation[J]. Wear, 1996, 191(1/2): 161-169.
    [5] XIE GANG, IWNICKI S D. Calculation of wear on a corrugated rail using a three-dimensional contact model[J]. Wear, 2008, 265(9/10): 1238-1246.
    [6] XIE GANG, IWNICKI S D. Simulations of roughness growth on rails-results from non-Hertzain, non-steady contact model[J]. Vehicle System Dynamics, 2008, 46(1/2): 117-128.
    [7] KNOTHE K, GROSS-THEBING A. Short wavelength rai lcorrugation and non-steady-state contact mechanics[J]. Vehicle System Dynamics, 2008, 46(1/2): 49-66.
    [8] KALKER J J. Transient phenomena in two elastic cylindersrolling over each other with dry friction[J]. Journal of Applied Mechanics, 1970, 37(3): 677-688. doi: 10.1115/1.3408597
    [9] KNOTHE K, GROSS-THEBING A. Derivation of frequency dependent creep coefficients based on an elastic half-space model[J]. Vehicle System Dynamics, 1986, 15(3): 133-153. doi: 10.1080/00423118608968848
    [10] GROSS-T HEBING A. Frequency-dependent creep coefficients for three-dimensional rolling contact problem[J]. Vehicle System Dynamics, 1989, 18(6): 359-374. doi: 10.1080/00423118908968927
    [11] ALONSO A, GIM? NEZ J. Non-steady state modelling of wheel-rail contact problem for the dynamic simulation of railway vehicles[J]. Vehicle System Dynamics, 2008, 46(3): 179-196. doi: 10.1080/00423110701248011
    [12] PIOTROWSKI J, KALKER J J. A non-linear mathematical model for finite, periodic rail corrugations[C]∥ALIABALI M H, BREBBIA C A. The First International Conference on Contact Mechanics. Southampton: Computational Mechanics Inc., 1993: 413-424.
    [13] KALKER J J. Three-Dimension Elastic Bodies in Rolling contact[M]. Dordrecht: Kluwer Academic Publishers, 1990.
    [14] SHEN Z Y, HEDRICK J K, ELKINS J. A comparison of alternative creep force models for rail vehicle dynamic analysis[J]. Vehicle System Dynamics, 1983, 12(1): 70-82.
    [15] 潘立登, 潘仰东. 系统辨识与建模[M]. 北京: 化学工业出版社, 2004.

    PAN Li-deng, PAN Yang-dong. System Identification and Modelling[M]. Beijing: Chemical Industry Press, 2004. (in Chinese)
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  880
  • HTML全文浏览量:  115
  • PDF下载量:  617
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-12-13
  • 刊出日期:  2011-04-25

目录

    /

    返回文章
    返回