留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

从控机车滞后时间对3万t列车纵向力的影响

魏伟 于忠建

魏伟, 于忠建. 从控机车滞后时间对3万t列车纵向力的影响[J]. 交通运输工程学报, 2011, 11(2): 39-44. doi: 10.19818/j.cnki.1671-1637.2011.02.007
引用本文: 魏伟, 于忠建. 从控机车滞后时间对3万t列车纵向力的影响[J]. 交通运输工程学报, 2011, 11(2): 39-44. doi: 10.19818/j.cnki.1671-1637.2011.02.007
WEI Wei, YU Zhong-jian. Influence of lag time for slave control locomotive on longitudinal coupler forces of 30 000 t train[J]. Journal of Traffic and Transportation Engineering, 2011, 11(2): 39-44. doi: 10.19818/j.cnki.1671-1637.2011.02.007
Citation: WEI Wei, YU Zhong-jian. Influence of lag time for slave control locomotive on longitudinal coupler forces of 30 000 t train[J]. Journal of Traffic and Transportation Engineering, 2011, 11(2): 39-44. doi: 10.19818/j.cnki.1671-1637.2011.02.007

从控机车滞后时间对3万t列车纵向力的影响

doi: 10.19818/j.cnki.1671-1637.2011.02.007
基金项目: 

牵引动力国家重点实验室自主研究课题 2009TPL_T02

辽宁省高等学校科研计划项目 2008S036

辽宁省自然科学基金项目 20102016

详细信息
    作者简介:

    魏伟(1963-),男,河北献县人,大连交通大学教授,工学博士,从事空气制动与列车动力学研究

  • 中图分类号: U260.34

Influence of lag time for slave control locomotive on longitudinal coupler forces of 30 000 t train

More Information
  • 摘要: 使用列车空气制动仿真方法获得空气制动系统特性, 通过列车动力学仿真方法分析了3万t列车在多机车不同步条件下紧急制动和常用制动时车钩力, 提出了大秦线3万t重载组合列车的可行性编组。分析了从控机车在各种滞后时间情况下, 列车常用和紧急制动的最大车钩力的变化特点。研究结果表明: 平道常用全制动工况下, 从控二机车滞后时间比从控一机车滞后时间对车钩力影响更大, 从控机车滞后于主控机车5 s时, 最大车钩力增加了80.2%;平道紧急制动工况下, 从控一机车滞后时间对车钩力影响更大, 从控机车滞后于主控机车5 s时, 最大车钩力增加了335.9%;从控机车滞后时间控制在4.1 s以内, 车钩力可以控制在许用范围内。

     

  • 图  1  全制动时最大车钩力沿车长分布

    Figure  1.  Maximum coupler force distribution along train length at full service application

    图  2  不同滞后时间制动波传播特性

    Figure  2.  Propagation characters of brake waves for different lag times

    图  3  全制动时从控一机车滞后时间对最大压钩力影响

    Figure  3.  Effect of first slave control locomotive's lag time on maximum compression coupler forces under full service application

    图  4  全制动时从控二机车滞后时间对最大压钩力影响

    Figure  4.  Effect of second slave control locomotive's lag time on maximum compression coupler forces under full service application

    图  5  紧急制动时最大车钩力沿车长分布

    Figure  5.  Maximum coupler forces' distributions along train length under emergency application

    图  6  不同滞后时间的紧急制动传播特性

    Figure  6.  Brake wave propagation characters for different lag times under emergency application

    图  7  紧急制动时从控一机车滞后时间对最大压钩力影响

    Figure  7.  Effect of first slave control locomotive's lag time on maximum compression coupler forces under emergency application

    图  8  紧急制动时从控二机车滞后时间对最大压钩力影响

    Figure  8.  Effect of second slave control locomotive's lag time on maximum compression coupler forces under emergency application

  • [1] RAOJ S, RAGHAVACHARYULU E, KUMAR N. Mathematical modelling to simulate the transient dynamic longitudinal force in draw bars of a train-consist[J]. Journal of Sound and Vibration, 1984, 94 (3): 365-379. doi: 10.1016/S0022-460X(84)80017-6
    [2] DUNCAN I B, WEBB P A. The longitudinal behavior of heavy haul trains using remote locomotives[C]∥Austrilia Institution of Engineers. Proceedings of the Fourth International Heavy Haul Railway Conference. Brisbane: Austrilia Institutionof Engineers, 1989: 587-590.
    [3] VERBITSKIY V G, LOBAS L G. Simulation of dynamic behavior of monorail car[J]. Engineering Simulation, 2000, 18: 119-130.
    [4] ANSARI M, ESMAILZADEH E, YOUNESIAN D. Longitudinal dynamics of freight trains[J]. International Journal of Heavy Vehicle Systems, 2009, 16 (1/2): 102-131. doi: 10.1504/IJHVS.2009.023857
    [5] NASR A, MOHAMMADI S. The effects of train brake delay time on in-train forces[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2010, 224 (6): 523-534. doi: 10.1243/09544097JRRT306
    [6] CHOU M, XIA X, KAYSER C. Modelling and model validation of heavy-haul trains equipped with electronically controlled pneumatic brake systems[J]. Control Engineering Practice, 2007, 15 (4): 501-509. doi: 10.1016/j.conengprac.2006.09.006
    [7] BELFORTE P, CHELI F, DIANAAND G, et al. Numerical and experimental approach for the evaluation of severe longitudinal dynamics of heavy freight trains[J]. Vehicle System Dynamics, 2008, 46 (S): 937-955.
    [8] 中国铁道科学研究院. 大秦线采用LOCOTROL技术开行2万吨重载组合列车试验报告[R]. 北京: 中国铁道科学研究院, 2006.

    China Academy of Railway Sciences. Datong-Qinhuangdao Railway Line using LOCOTROL technique opens 20 000 t heavy haul combined train test report[R]. Beijing: China Academy of Railway Sciences, 2006. (in Chinese)
    [9] 中国铁道科学研究院. 大秦线HXD1机车牵引2万吨组合列车试验报告[R]. 北京: 中国铁道科学研究院, 2007.

    China Academy of Railway Sciences. Datong-Qinhuangdao Railway Line HXD1 locomotive drag 20 000 t heavy haul combined train test report[R]. Beijing: China Academy of Railway Sciences, 2007. (in Chinese)
    [10] 耿志修, 李学峰, 张波. 大秦线重载列车运行仿真计算研究[J]. 中国铁道科学, 2008, 29 (2): 88-93. doi: 10.3321/j.issn:1001-4632.2008.02.017

    GENG Zhi-xiu, LI Xue-feng, ZHANG Bo. Simulation study of heavy haul operation on Datong-Qinhuangdao Railway[J]. China Railway Science, 2008, 29 (2): 88-93. (in Chinese) doi: 10.3321/j.issn:1001-4632.2008.02.017
    [11] 高春明, 冀彬, 张波, 等. 大秦线重载组合列车的LOCO-TROL技术应用研究[J]. 电力机车与城轨车辆, 2006, 29 (6): 5-7, 41. doi: 10.3969/j.issn.1672-1187.2006.06.002

    GAO Chun-ming, JI Bin, ZHANG Bo, et al. Research and application of LOCOTROL technologies for heavy haul trains on Datong-Qinhuangdao Railway Line[J]. Electric Locomotives and Mass Transit Vehicles, 2006, 29 (6): 5-7, 41. (in Chinese) doi: 10.3969/j.issn.1672-1187.2006.06.002
    [12] 赵鑫, 王成国, 马大炜. 机车无线同步控制技术对2万t重载组合列车纵向力的影响[J]. 中国铁道科学, 2008, 29 (3): 78-83. doi: 10.3321/j.issn:1001-4632.2008.03.015

    ZHAO Xin, WANG Cheng-guo, MA Da-wei. Influence of locomotive wireless sync control technology on the longitudinal force of 20 000 t heavy haul combined train[J]. China Railway Science, 2008, 29 (3): 78-83. (in Chinese) doi: 10.3321/j.issn:1001-4632.2008.03.015
    [13] 常崇义, 王成国, 马大炜, 等. 2万t组合列车纵向力计算研究[J]. 铁道学报, 2006, 28 (2): 89-94. doi: 10.3321/j.issn:1001-8360.2006.02.018

    CHANG Chong-yi, WANG Cheng-guo, MA Da-wei, et al. Study on numerical analysis of longitudinal forces of the 20 000 t heavy haul[J]. Journal of the China Railway Society, 2006, 28 (2): 89-94. (in Chinese) doi: 10.3321/j.issn:1001-8360.2006.02.018
    [14] 魏伟. 两万吨组合列车制动特性[J]. 交通运输工程学报, 2007, 7 (6): 12-16. doi: 10.3321/j.issn:1671-1637.2007.06.003

    WEI Wei. Brake performances of 20 000 ton connectedtrain[J]. Journal of Traffic and Transportation Engineering, 2007, 7 (6): 12-16. (in Chinese) doi: 10.3321/j.issn:1671-1637.2007.06.003
    [15] 魏伟, 赵连刚. 两万吨列车纵向动力学性能预测[J]. 大连交通大学学报, 2009, 30 (2): 39-43. doi: 10.3969/j.issn.1673-9590.2009.02.010

    WEI Wei, ZHAO Lian-gang. Prediction of longitudinal dynamic coupler force of 20 000 ton connected train[J]. Journal of Dalian Jiaotong University, 2009, 30 (2): 39-43. (in Chinese) doi: 10.3969/j.issn.1673-9590.2009.02.010
    [16] 魏伟. 列车空气制动系统仿真的有效性[J]. 中国铁道科学, 2006, 27 (5): 104-109. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK200605019.htm

    WEI Wei. The validity of the simulation for train air brake system[J]. China Railway Science, 2006, 27 (5): 104-109. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK200605019.htm
  • 加载中
图(8)
计量
  • 文章访问数:  947
  • HTML全文浏览量:  113
  • PDF下载量:  816
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-12-16
  • 刊出日期:  2011-04-25

目录

    /

    返回文章
    返回