-
摘要: 分析了高速公路出入口区域交通流特性及事故原因, 以车辆临界减速度和不安全度为基础, 将危险程度由二维矢量转化为一维标量, 提出了以制动减速度和不安全密度指数作为出入口区域行车风险评价指标, 建立了行车风险评价模型。根据安全风险管理规定与人机工程学原理, 确定了风险等级和评价标准; 基于大量试验数据, 提出了高速公路出入口区域主线行车控制标准建议值。分析结果表明: 不限速时, 整个出口区域行车风险处于中等; 限速为65 km.h-1时, 出口区域行车风险均降至低等, 出口区域平均风险值最小, 不安全密度指数峰值从0.112减小到0.064, 下降了42.86%;限速分别为55、50 km.h-1时, 出口区域行车风险反而增至高等, 不安全密度指数峰值分别为0.125和0.121。可见, 限速65 km.h-1的措施最有效。Abstract: The traffic flow characteristics and accident reasons in the passageway areas of freeway were analyzed.Based on vehicle critical deceleration and unsafe degree, risk level was changed from two dimensional vector to one dimensional scalar.Braking decelerations and unsafe density indexes were put forward as the driving risk evaluation indexes of passageway areas, and a driving risk evaluation model was established.According to safety risk management regulations and human-mechanism engineering theory, risk grades and evaluation standards were dertermined.On the basis of many experiment data, the suggested values of main line driving control standards in passageway areas of freeway were proposed.Analysis result shows that when speed is not limited, the driving risk of outlet area is middle.When speed is limited at 65 km·h-1, the driving risk of outlet area is low, and the average risk value is smallest.The peak value of unsafe density index reduces from 0.112 to 0.064, and decreases about 42.86%.When speeds are limited at 55, 50 km·h-1, the risk of outlet area is high, and the peak values of unsafe density indexes rise to 0.125 and 0.121 respectively.Obviously, the limit measure of 65 km·h-1 is most effective.
-
Key words:
- traffic safety /
- passageway areas /
- driving risk /
- braking deceleration /
- unsafe density index /
- speed limit /
- traffic simulation
-
表 1 行车风险等级
Table 1. Driving risk grades
表 2 不安全密度指数
Table 2. Unsafe density indexes
m·s-2 表 3 车速控制标准建议值
Table 3. Suggested values of speed control standard
km·h-1 表 4 交通量控制标准建议值
Table 4. Suggested values of traffic volume control standard
veh·h-1 表 5 ud的计算结果
Table 5. Calculation result of ud
m·s-2 -
[1] 蒋锐. 高速公路基本路段交通安全分析[D]. 福州: 福建农林大学, 2005.JIANG Rui. Studies on the safety of basic freeway session[D]. Fuzhou: Fujian Agriculture and Forestry University, 2005. (in Chinese) [2] 梁夏, 郭忠印, 方守恩. 道路线形与道路安全性关系的统计分析[J]. 同济大学学报, 2002, 30(2): 203-206. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ200202015.htmLIANG Xia, GUO Zhong-yin, FANG Shou-en. Statistic analyses of relationsbetween road alignment and road safety[J]. Journal of Tongji University, 2002, 30(2): 203-206. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ200202015.htm [3] 宋成举. 高速公路出入口匝道行车安全性分析和评价研究[D]. 哈尔滨: 哈尔滨工业大学, 2007.SONG Cheng-ju. Analysis and evaluation on the vehicle operation safety of freeway entrance and exit ramp[D]. Harbin: Harbin Institute of Technology, 2007. (in Chinese) [4] 江晓霞, 袁宏伟. 高速公路互通立交安全性设计研究[J]. 公路, 2006(4): 167-171. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL200604037.htmJIANG Xiao-xia, YUAN Hong-wei. A study on design for interchange safety of expressway[J]. Highway, 2006(4): 167-171. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL200604037.htm [5] CHANG T H. Effect of vehicles' suspension on highway horizontal curve design[J]. Journal of transportation engineering, 2001, 127(1): 88-91. [6] FHWA. Design consistency module(DCM)engineer's manual: interactive highway safety design model[R]. Washington DC: FHWA, 2003. [7] ALEXANDER S. Modeling the traffic behavior at grade-separated interchanges[J]. Traffic Engineering and Control, 1985, 26(9): 410-415. [8] LAVAL J A, DAGANZO C F. Lane-changing in traffic streams[J]. Transportation Research Part B: Methodological, 2006: 40(3): 251-264. [9] HASSAN Y, EASA S M. Modeling of required preview sight distance[J]. Journal of Transportation Engineering, 2000, 126(1): 13-20. [10] 熊烈强, 殷燕芳, 王富, 等. 匝道连接处交通流动力学的理论、模型及其应用[J]. 武汉理工大学学报: 交通科学与工程版, 2006, 30(2): 261-264. https://www.cnki.com.cn/Article/CJFDTOTAL-JTKJ200602020.htmXIONG Lie-qiang, YIN Yan-fang, WANG Fu, et al. Theory, models and application about traffic dynamic on ramp junction of expressway[J]. Journal of Wuhan University of Technology: Transportation Science and Engineering, 2006, 30(2): 261-264. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JTKJ200602020.htm [11] ZHANG M, KIM T, NIE Xiao-jian, et al. Evaluation of on-ramp control algorithms[R]. Berkeley: PATH Center for ATMS Research of University of California, 2001. [12] EASA S M. Distributing super elevation to maximize highway design consistency[J]. Journal of Transportation Engineering. 2003, 129(2): 127-133. doi: 10.1061/(ASCE)0733-947X(2003)129:2(127) [13] 卓曦, 张宁, 钱振东. 大型公建对向机动车出入口间距计算及优选[J]. 交通运输工程学报, 2010, 10(4): 71-78. http://transport.chd.edu.cn/article/id/201004012ZHUO Xi, ZHANG Ning, QIAN Zhen-dong. Spacing calculation and selection on opposite vehicle access of large public building[J]. Journal of Traffic and Transportation Engineering, 2010, 10(4): 71-78. (in Chinese) http://transport.chd.edu.cn/article/id/201004012 [14] 程国柱, 裴玉龙, 池利兵. 基于汽车行驶广义费用最小的高速公路最高车速限制方法[J]. 吉林大学学报: 工学版, 2009, 39(4): 900-905. https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY200904014.htmCHENG Guo-zhu, PEI Yu-long, CHI Li-bin. Method of setting maximum speed limit based on minimum generalized running cost of vehicle[J]. Journal of Jilin University: Engineering and Technology Edition, 2009, 39(4): 900-905. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY200904014.htm [15] 徐秋实, 任福田, 孙小端, 等. 高速公路互通式立交加速车道长度的研究[J]. 北京工业大学学报, 2007, 33(3): 298-301. https://www.cnki.com.cn/Article/CJFDTOTAL-BJGD200703015.htmXU Qiu-shi, REN Fu-tian, SUN Xiao-duan, et al. Research on the length of acceleration lane at freeway interchange[J]. Journal of Beijing University of Techlogy, 2007, 33(3): 298-301. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BJGD200703015.htm