留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

重载列车制动管路对制动性能的影响

魏伟 杜念博

魏伟, 杜念博. 重载列车制动管路对制动性能的影响[J]. 交通运输工程学报, 2011, 11(5): 49-54. doi: 10.19818/j.cnki.1671-1637.2011.05.008
引用本文: 魏伟, 杜念博. 重载列车制动管路对制动性能的影响[J]. 交通运输工程学报, 2011, 11(5): 49-54. doi: 10.19818/j.cnki.1671-1637.2011.05.008
WEI Wei, DU Nian-bo. Influence of braking pipe on braking performance for heavy haul train[J]. Journal of Traffic and Transportation Engineering, 2011, 11(5): 49-54. doi: 10.19818/j.cnki.1671-1637.2011.05.008
Citation: WEI Wei, DU Nian-bo. Influence of braking pipe on braking performance for heavy haul train[J]. Journal of Traffic and Transportation Engineering, 2011, 11(5): 49-54. doi: 10.19818/j.cnki.1671-1637.2011.05.008

重载列车制动管路对制动性能的影响

doi: 10.19818/j.cnki.1671-1637.2011.05.008
基金项目: 

牵引动力国家重点实验室自主研究课题 2009TPL-T02

辽宁省高等学校科研计划项目 2008S036

辽宁省自然科学基金项目 20102016

详细信息
    作者简介:

    魏伟(1963-), 男, 河北献县人, 大连交通大学教授, 工学博士, 从事列车动力学研究

  • 中图分类号: U270.35

Influence of braking pipe on braking performance for heavy haul train

More Information
  • 摘要: 应用流体动力学理论, 建立了重载列车制动管路模型与分配阀模型, 求解了制动管路和边界点的动力学方程, 仿真计算了制动过程中的制动系统性能, 分析了列车主管和支管长度对制动系统性能的影响。分析结果表明: 当列车主管长度由13.24 m增大为17.24 m时, 在常用制动下, 列车管路减压时间增大了30.75%, 制动缸升压时间增大了20.45%, 主管长度对常用制动的影响要强于对紧急制动的影响; 当列车支管长度由0.50 m增大到5.00 m时, 在常用制动下, 列车管路减压时间增大了6.63%, 制动缸升压时间增大了5.22%, 支管长度对常用制动和紧急制动影响程度差别不大。列车制动管路长度增大降低了列车制动管路减压速度与制动缸升压速度; 列车主管长度对制动性能的影响要明显大于列车支管长度的影响, 车辆位置距机车越远影响越明显。

     

  • 图  1  车辆制动系统模型

    Figure  1.  Model of vehicle braking system

    图  2  常用制动下主管减压性能

    Figure  2.  Decompression performances of main pipes under common braking

    图  3  减压时间

    Figure  3.  Decompression time

    图  4  常用制动下不同主管长度时的制动缸压力曲线

    Figure  4.  Braking cylinder pressure curves for different main pipe lengths under common braking

    图  5  紧急制动下主管减压性能

    Figure  5.  Decompression performances of main pipes under emergency braking

    图  6  紧急制动下不同主管长度时的制动缸压力曲线

    Figure  6.  Braking cylinder pressure curves for different main pipe lengths under emergency braking

    图  7  常用制动下支管减压性能

    Figure  7.  Decompression performances of branch pipes under common braking

    图  8  常用制动下不同支管长度时的制动缸压力曲线

    Figure  8.  Braking cylinder pressure curves for different branch pipe lengths under common braking

    图  9  紧急制动下支管减压性能

    Figure  9.  Decompression performances of branch pipes under emergency braking

    图  10  紧急制动下不同支管长度时的制动缸压力曲线

    Figure  10.  Braking cylinder pressure curves for different branch pipe lengths under emergency braking

  • [1] PIECHOWIAK T. Pneumatic train brake simulation method[J]. Vehicle System Dynamics, 2009, 47(12): 1-20.
    [2] PIECHOWI AK T. Verification of pneumatic rail way brake model[J]. Vehicle System Dynamics. 2010, 48(3): 283-299.
    [3] PUGI L, PALAZZOLO A, FIORAVANTI D. Simulation of rail way brake plants: an application to SAADKMS freight wagons[J]. Proceeding of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2008, 222(4): 321-329. doi: 10.1243/09544097JRRT118
    [4] PUGI L, MALVEZZI M, ALLOTTAB, et al. A parametric library for the simulation of a Union Internationale des Chemins de Fer (UIC) pneumatic braking system[J]. Proceeding of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2004, 218(2): 117-132. doi: 10.1243/0954409041319632
    [5] CANTONE L, CRESCENTI NI E, VERZICCOL R, et al, Anumerical model for the analysis of unsteady train braking and releasing manoeuvres[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2009, 223(3): 305-317. doi: 10.1243/09544097JRRT240
    [6] CANTONE L. Train Dy: the new Union Internationale des Chemins de Fer software for freight train inter operability[J]. Proceeding of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2011, 225(1): 57-70. doi: 10.1243/09544097JRRT347
    [7] NAMS W, KIM HJ. A study on the improvement of release application characteristics of pneumatic brakes for freight train[J]. Journal of Mechanical Science and Technology, 2002, 16(6): 776-784.
    [8] 魏伟, 张善荣, 刘庆忠. 长大列车制动系统减压特性的计算机模拟[J]. 大连铁道学报, 1992, 13(4): 43-49. https://www.cnki.com.cn/Article/CJFDTOTAL-DLTD199204007.htm

    WEI Wei, ZHANG Shan-rong, LIU Qing-zhong. A study on characteristic of pressure reduction of air brake system in a long train[J]. Journal of Dalian Rail way Institute, 1992, 13(4): 43-49. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DLTD199204007.htm
    [9] 魏伟, 李文辉. 列车空气制动系统数值仿真[J]. 铁道学报, 2003, 25(1): 38-42. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB200301008.htm

    WEI Wei, LI Wen-hui. Simulation model of train brake system[J]. Journal of the China Rail way Society, 2003, 25(1): 38-42. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB200301008.htm
    [10] WEI Wei, LIN Ye. Simulation of a freight train brake system with 120 valves[J]. Proceeding of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2009, 223(1): 85-92. doi: 10.1243/09544097JRRT119
    [11] 魏伟. 列车空气制动系统仿真的有效性[J]. 中国铁道科学, 2006, 27(5): 105-109. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK200605019.htm

    WEI Wei. The validity of the simulation for train air brake system[J]. China Rail way Science, 2006, 27(5): 105-109. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK200605019.htm
    [12] 魏伟, 刘涛, 张军. KZ1型控制阀仿真模型及列车制动性能仿真研究[J]. 中国铁道科学, 2010, 31(1): 105-110 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201001021.htm

    WEI Wei, LIU Tao, ZHANG Jun. The simulation model of KZ1 control valve and the simulation study on train braking performance[J]. China Rail way Science, 2010, 31(1): 105-110. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201001021.htm
    [13] 魏伟. 120阀及试验台的计算机模拟[J]. 铁道学报, 2000, 22(1): 31-35. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB200001006.htm

    WEI Wei. Computer simulation of 120 vehicle distributing valve and its testrig[J]. Journal of the China Rail way Society, 2000, 22(1): 31-35. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB200001006.htm
    [14] 魏伟, 赵连刚. 两万吨列车纵向动力学性能预测[J]. 大连交通大学学报, 2009, 30(2): 39-43. https://www.cnki.com.cn/Article/CJFDTOTAL-DLTD200902010.htm

    WEI Wei, ZHAO Lian-gang. Prediction of longitudinal dynamic coupler force of 20 000 ton connected train[J]. Journal of Dalian Jiaotong University, 2009, 30(2): 39-43. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DLTD200902010.htm
    [15] 魏伟, 项宇航. 机车风源系统设计方法研究[J]. 大连交通大学学报, 2010, 31(5): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-DLTD201005001.htm

    WEI Wei, XIANG Yu-hang. Study of air supply system design for locomotive[J]. Journal of Dalian Jiaotong University, 2010, 31(5): 1-5. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DLTD201005001.htm
    [16] 魏伟, 于忠建. 从控机车滞后时间对3万t列车纵向力的影响[J]. 交通运输工程学报, 2011, 11(2): 39-44. http://transport.chd.edu.cn/article/id/201102007

    WEI Wei, YU Zhong-jian. Influence of lag time for slave control loco motive on longitudinal coupler forces of 30 000 t train[J]. Journal of Traffic and Transportation Engineering, 2011, 11(2): 39-44. (in Chinese) http://transport.chd.edu.cn/article/id/201102007
    [17] 刘金朝, SEONG W, 王成国, 等. 长大货物列车空气管系3维充气模型的数值仿真[J]. 中国铁道科学, 2005, 26(5): 66-71. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK200505014.htm

    LIU Jin-zhao, SEONG W, WANG Cheng-guo, et al. Numerical simulation of 3D air charging model of the heavy haul train air brake pipes system[J]. China Rail way Science, 2005, 26(5): 66-71. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK200505014.htm
  • 加载中
图(10)
计量
  • 文章访问数:  875
  • HTML全文浏览量:  184
  • PDF下载量:  870
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-05-10
  • 刊出日期:  2011-10-25

目录

    /

    返回文章
    返回