-
摘要: 为了提高汽车ABS整车检测效率, 开发了一种新型的基于台架的汽车ABS整车检测系统。该系统利用飞轮的转动惯量模拟车辆在道路上运动的平动惯量; 通过扭矩控制器在4个车轮所在滚筒上加载不同的扭矩, 实现不同路面附着系数的动态模拟; 采用基于CAN总线的分布式网络测控技术完成台架的运动控制和车辆速度数据的采集; 利用BP神经网络自学习功能分析台架检测数据, 总结大量模式映射关系, 用训练好的网络实现检测结果自动分类。室内台架检测结果和道路试验结果对比分析表明: 台架检测结果与道路试验结果基本相同, 主要参数误差小于4%, 因此, 台架检测系统能够准确地反映装有ABS的车辆在不同路面工况下的制动性能。Abstract: In order to improve the detection efficiency of automobile ABS, a novel detection system was developed based on bench.The inertia of moving automobile was simulated by using the rotational inertia of flywheel.Four torque controllers were adopted to load different torques on four rollers supporting four wheels of automobile, so that different road adhesion coefficients were simulated.CAN-bus-based distributed network control technology was used to complete the motion control of bench and the data acquisition of automotive speed.BP neural network was used to analyze the test data for its self-learning function.The summarized mapping relationship of ABS work states was stored in the network, and the automatic classification of test results was achieved by using the network.Comparative analysis of bench test result and road experiment result for ABS shows that the results are basically same, the errors of main parameters are less than 4%, so bench test can more accurately reflect the brake performances of automobile equipped with ABS in different road environments.
-
Key words:
- automotive engineering /
- ABS /
- bench detection /
- simulation of road adhesion coefficient /
- CAN bus /
- neural network
-
表 1 训练样本
Table 1. Training samples
表 2 测试样本及测试结果
Table 2. Test samples and test result
表 3 台架与道路试验结果对比
Table 3. Comparison of bench test result and road test result
-
[1] 刘建房, 李以农, 郭旭, 等. 汽车ABS动态试验台的开发设计[J]. 重庆大学学报: 自然科学版, 2006, 29(12): 1-4. doi: 10.11835/j.issn.1000-582X.2006.12.002LIU Jian-fang, LI Yi-nong, GUO Xu, et al. Development and design of ABS dynamic test-bed for automobile[J]. Journal of Chongqing University: Natural Science Edition, 2006, 29(12): 1-4. (in Chinese) doi: 10.11835/j.issn.1000-582X.2006.12.002 [2] 许猛. 装有ABS汽车制动试验台的研究[D]. 上海: 上海海事大学, 2006.XU Meng. Study on braking test bench of vehicle equipped with ABS[D]. Shanghai: Shanghai Maritime University, 2006. (in Chinese) [3] MIRZAEINEJAD H, MIRZAEI M. A novel method for nonlinear control of wheel slip in anti-lock braking systems[J]. Control Engineering Practice, 2010, 18(8): 918-926. doi: 10.1016/j.conengprac.2010.03.015 [4] 杨坤, 李静, 李幼德, 等. 基于汽车电子机械制动系统的EBD/ABS研究[J]. 系统仿真学报, 2009, 21(6): 1785-1788.YANG Kun, LI Jing, LI You-de, et al. Study of EBD/ABS based on electromechanical brake system[J]. Journal of System Simulation, 2009, 21(6): 1785-1788. (in Chinese) [5] CHELI F, CONCAS A, GIANGIULIO E, et al. A simplified ABS numerical model: comparison with HIL and full scale experimental tests[J]. Computers and Structures, 2008, 86(13 /14): 1494-1502. [6] JACQUET A, CHAMAILLARD Y, BASSET M, et al. Anti-lock braking system using predictive control and on-line tire/road characteristics estimation[C]∥ IFAC. Proceedings of the 17th IFAC World Congress. Seoul: IFAC, 2008: 2099-2104. [7] POURSAMAD A. Adaptive feedback linearization control of antilock braking systems using neural networks[J]. Mechatronics, 2009, 19(5): 767-773. doi: 10.1016/j.mechatronics.2009.03.003 [8] HARIFI A, AGHAGOLZADEH A, ALIZADEH G, et al. Designing a sliding mode controller for slip control of antilock brake systems[J]. Transportation Research Part C: Emerging Technologies, 2008, 16(6): 731-741. doi: 10.1016/j.trc.2008.02.003 [9] 李慧, 朱德文. 基于PWM控制的高速开关电磁阀在汽车防抱死制动系统中的应用[J]. 机械研究与应用, 2007, 20(3): 83-84. doi: 10.3969/j.issn.1007-4414.2007.03.043LI Hui, ZHU De-wen. Application of high speed on-off solenoid valve based on PWM in automobile ABS[J]. Mechanical Research and Application, 2007, 20(3): 83-84. (in Chinese) doi: 10.3969/j.issn.1007-4414.2007.03.043 [10] 吴昭润, 彭美春, 曹华, 等. 计算机仿真汽车ABS性能评价方法[J]. 交通与计算机, 2005, 23(3): 67-69.WU Zhao-run, PENG Mei-chun, CAO Hua, et al. Performance evaluation method for automobile ABS by computer simulation[J]. Computer and Communications, 2005, 23(3): 67-69. (in Chinese) [11] PARK E J, STOIKOV D, FALCAO DA LUZ L, et al. A performance evaluation of an automotive magnetorheological brake design with a sliding mode controller[J]. Mechatronics, 2006, 16(7): 405-416. doi: 10.1016/j.mechatronics.2006.03.004 [12] CHO J R, CHOI J H, YOO W S, et al. Estimation of dry road braking distance considering frictional energy of patterned tires[J]. Finite Elements in Analysis and Design, 2006, 42(14/15): 1248-1257. [13] 张立斌, 苏建, 单洪颖, 等. 基于惯性质量模拟的汽车ABS检测方法[J]. 吉林大学学报: 工学版, 2009, 39(1): 115-118. doi: 10.3321/j.issn:1671-5489.2009.01.025ZHANG Li-bin, SU Jian, SHAN Hong-ying, et al. Testing method of vehicle ABS based on the inertia simulation[J]. Journal of Jilin University: Engineering and Technology Edition, 2009, 39(1): 115-118. (in Chinese) doi: 10.3321/j.issn:1671-5489.2009.01.025 [14] PETERSEN A, BARRETT R, MORRISON S. Driver-training and emergency brake performance in cars with antilock braking systems[J]. Safety Science, 2006, 44(10): 905-917. doi: 10.1016/j.ssci.2006.05.006 [15] 彭美春, 朱占胜, 林怡青, 等. 不同路面下汽车ABS仿真检测研究[J]. 汽车工程, 2008, 30(2): 160-163. doi: 10.3321/j.issn:1000-680X.2008.02.015PENG Mei-chun, ZHU Zhan-sheng, LIN Yi-qing, et al. A study on simulation testing of vehicle ABS on different roads[J]. Automotive Engineering, 2008, 30(2): 160-163. (in Chinese) doi: 10.3321/j.issn:1000-680X.2008.02.015 [16] 施毅, 闵永军, 路小波. 基于计算机测控的汽车ABS台架试验系统的研制[J]. 公路交通科技, 2006, 23(12): 145-148. doi: 10.3969/j.issn.1002-0268.2006.12.033SHI Yi, MIN Yong-jun, LU Xiao-bo. Design and development of vehicle ABS bench test system based on computer test and control[J]. Journal of Highway and Transportation Research and Development, 2006, 23(12): 145-148. (in Chinese) doi: 10.3969/j.issn.1002-0268.2006.12.033 [17] 李洪东. 基于BP神经网络的汽车ABS系统故障诊断[D]. 长春: 吉林大学, 2008.LI Hong-dong. Fault diagnosis for automobile ABS system based on BP neural network[D]. Changchun: Jilin University, 2008. (in Chinese) [18] SUN Yan-jing, ZHANG Shen, MIAO Chang-xin, et al. Improved BP neural network for transformer fault diagnosis[J]. Journal of China University of Mining and Technology, 2007, 17(1): 138-142. doi: 10.1016/S1006-1266(07)60029-7 [19] RYCKAERT P, SALAETS B, WHITE A S, et al. A comparison of classical, state-space and neural network control to avoid slip[J]. Mechatronics, 2005, 15(10): 1273-1288. doi: 10.1016/j.mechatronics.2005.03.007 [20] MATUŠKO J, PETROVIĆ I, PERIĆ N. Neural network based tire/road friction force estimation[J]. Engineering Applications of Artifical Intelligence, 2008, 21(3): 442-456. doi: 10.1016/j.engappai.2007.05.001