-
摘要: 基于并行计算技术和网络数据存储方法, 考虑了出行者的偏好, 分析了多级网络分解方法和双端队列最短路径计算方法, 提出了一种新的中心式诱导路径优化计算方法。以长沙市和长春市城市路网的实际数据为基础, 在普通PC机群、联想服务器机群及惠普工作站机群3种不同计算性能的并行计算平台上进行试验测试。测试结果表明: 使用网络数据存储方法, 能够直接确定邻接节点与相应弧的存储位置, 节点信息的查询时间明显减小; 使用多级网络分解方法, 主要路段作为被切割弧的概率降低, 最短路径计算过程中处理器的通信量减小; 使用双端队列最短路径计算方法, 最短路径计算速度明显提升; 使用新的计算方法, 长沙市路网中400万条最短路径计算时间为46s, 长春市路网中1 170万条最短路径计算时间为72s, 完全能够满足中心式诱导路径优化时间小于5min的要求。Abstract: Based on parallel calculation technology and network data storage method, traveler preferences were considered, the multi-level network decomposing method and the shortest path calculation method of deque were analyzed, and a new central guidance path optimization calculation method was put out. On the basis of the practical data of road networks in Changsha City and Changchun City, and tests on three different parallel calculation platforms including ordinary PC cluster, Lenovo server cluster and HP workstation cluster were carried out. Test result indicates that by using network data storage method, the storage locations of adjacency nodes and corresponding arcs can be determined directly, and the query time of node information obviously decreases. According to multi-level network decomposing method, the probability of main road as cutted arc reduces, and the commutation amounts of processors during the shortest path calculation process reduce. By using the shortest path calculation method of deque, the calculation speed of shortest path obviously increases. Through the new calculation method, the calculation time of 4 million shortest paths in Changsha City is 46 s, the calculation time of 11.7 million shortest paths in Changchun City is 72 s, and both of them satisfy the demand that central guidance path optimization time should be less than 5 rain.
-
表 1 数据库存储
Table 1. Database storage
表 2 路网特征
Table 2. Network characteristics
表 3 普通PC机群测试结果
Table 3. Test results of ordinary PC cluster
表 4 联想服务器机群测试结果
Table 4. Test results of Lenovo server cluster
表 5 惠普工作站机群测试结果
Table 5. Test results of HP workstation cluster
-
[1] TOMKEWITSCH R V. Dynamic route guidance and interactive transport management with ALI-SCOUT[J]. IEEE Transactions on Vehicular Technology, 1991, 40(1): 45-50. doi: 10.1109/25.69971 [2] 张赫, 杨兆升, 王伟. 基于实时交通流信息的中心式动态路径诱导系统行车路线优化技术研究[J]. 公路交通科技, 2004, 21(9): 91-94. doi: 10.3969/j.issn.1002-0268.2004.09.024ZHANG He, YANG Zhao-sheng, WANG Wei. Research on vehicle route optimization of centrally dynamic route guidance systems based on real-time traffic flow information[J]. Journal of Highway and Transportation Research and Development, 2004, 21(9): 91-94. (in Chinese) doi: 10.3969/j.issn.1002-0268.2004.09.024 [3] DEO N, PANG Chi-yin. Shortest path algorithms: taxonomy and annotation[J]. Networks, 1984, 14(2): 275-323. doi: 10.1002/net.3230140208 [4] O'CEARBHAILL E A, O'MAHONY M. Parallel implementation of a transportation network model[J]. Journal of Parallel and Distributed Computing, 2005, 65(1): 1-14. doi: 10.1016/j.jpdc.2004.07.003 [5] 王媛. 大范围战略交通协调控制系统关键技术研究[D]. 长春: 吉林大学, 2009.WANG Yuan. Research on key technologies of large-scale strategic traffic coordination and control system[D]. Changchun: Jilin University, 2009. (in Chinese) [6] 李丽丽. 基于拓扑关系的导航电子地图增量更新关键技术研究[D]. 长春: 吉林大学, 2009.LI Li-li. Key technology research of incremental updating of electronic navigation map based on topological relationship[D]. Changchun: Jilin University, 2009. (in Chinese) [7] 陈洁, 陆锋. 一种基于双端队列的交通网络最短路径Pallottino优化算法[J]. 中国图象图形学报, 2006, 11(3): 419-424. doi: 10.3969/j.issn.1006-8961.2006.03.019CHEN Jie, LU Feng. An optimization algorithm of Pallottino implemented with two queues in transportation network[J]. Journal of Image and Graphics, 2006, 11(3): 419-424. (in Chinese) doi: 10.3969/j.issn.1006-8961.2006.03.019 [8] SUNDELL H, TSIGAS P. Lock-free deques and doubly linked lists[J]. Journal of Parallel and Distributed Computing, 2008, 68(7): 1008-1020. doi: 10.1016/j.jpdc.2008.03.001 [9] MEYERHENKE H, MONIEN B, SAUERWALD T. A new diffusion-based multilevel algorithm for computing graph partitions[J]. Journal of Parallel and Distributed Computing, 2009, 69(9): 750-761. doi: 10.1016/j.jpdc.2009.04.005 [10] KARYPIS G, KUMAR V. Multilevel k-way partitioning scheme for irregular graphs[J]. Journal of Parallel and Distributed Computing, 1998, 58(1): 96-129. [11] ZHAN F B, NOON C E. Shortest path algorithms: an evaluation using real road networks[J]. Transportation Science, 1998, 32(1): 65-73. doi: 10.1287/trsc.32.1.65 [12] ZHAN F B. Three fastest shortest path algorithms on real road networks: data structures and procedures[J]. Journal of Geographic Information and Decision Analysis, 1997, 1(1): 70-82. [13] MEYER U. Design and analysis of sequential and parallel single-source shortest-paths algorithms[D]. Saarbrücken: Universität des Saarlandes, 2002. [14] MEYER U, SANDERS P. Δ-stepping: aparallelizable shortest path algorithm[J]. Journal of Algorithms, 2003, 49(1): 114-152. [15] KARYPIS G, KUMAR V. Multilevel k-way hypergraph partitioning[J]. VLSI Design, 2000, 11(3): 343-348