留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非邻近车辆最优速度差模型

孙棣华 张建厂 廖孝勇 田川 李永福 刘卫宁

孙棣华, 张建厂, 廖孝勇, 田川, 李永福, 刘卫宁. 非邻近车辆最优速度差模型[J]. 交通运输工程学报, 2011, 11(6): 114-118. doi: 10.19818/j.cnki.1671-1637.2011.06.018
引用本文: 孙棣华, 张建厂, 廖孝勇, 田川, 李永福, 刘卫宁. 非邻近车辆最优速度差模型[J]. 交通运输工程学报, 2011, 11(6): 114-118. doi: 10.19818/j.cnki.1671-1637.2011.06.018
SUN Di-hua, ZHANG Jian-chang, LIAO Xiao-yong, TIAN Chuan, LI Yong-fu, LIU Wei-ning. Optimal velocity difference model of non-neighboring vehicles[J]. Journal of Traffic and Transportation Engineering, 2011, 11(6): 114-118. doi: 10.19818/j.cnki.1671-1637.2011.06.018
Citation: SUN Di-hua, ZHANG Jian-chang, LIAO Xiao-yong, TIAN Chuan, LI Yong-fu, LIU Wei-ning. Optimal velocity difference model of non-neighboring vehicles[J]. Journal of Traffic and Transportation Engineering, 2011, 11(6): 114-118. doi: 10.19818/j.cnki.1671-1637.2011.06.018

非邻近车辆最优速度差模型

doi: 10.19818/j.cnki.1671-1637.2011.06.018
基金项目: 

高等学校博士学科点专项科研基金项目 20090191110022

重庆市自然科学基金项目 cstc2012jjB40002

详细信息
    作者简介:

    孙棣华(1962-), 男, 重庆人, 重庆大学教授, 工学博士, 从事智能交通系统与计算机集成制造研究

  • 中图分类号: U491.112

Optimal velocity difference model of non-neighboring vehicles

More Information
    Author Bio:

    SUN Di-hua (1962-), male, professor, PhD, +86-23-65106953, d3sun@163.com

  • 摘要: 描述了优化速度模型、广义力模型和全速度差模型, 分析了这些模型解决交通流问题的不足。在全速度差模型的基础上, 考虑驾驶人对非邻近双前车优化速度差信息的关注程度, 提出了最优速度差模型。通过线性稳定性分析, 得到交通流的稳定性条件, 通过数值模拟, 比较了最优速度差模型与全速度差模型。模拟结果表明: 应用最优速度差模型, 临界稳定性曲线的敏感系数变小, 自由流区域明显增大; 当敏感系数为0.310 0s-1时, 交通流稳定性增强, 并未出现负速度现象; 当敏感系数为0.777 8s-1且反应系数为0.2时, 车辆速度基本保持在0.963 5m·s-1; 随着反应系数的增大, 速度迟滞环逐渐趋向于一点。可见, 最优速度差模型有效。

     

  • 图  1  临界稳定性曲线

    Figure  1.  Critical stability curves

    图  2  a为0.310 0 s-1, t为100 s时的车辆速度分布

    Figure  2.  Vehicle velocity distributions while a is 0.310 0 s-1 and t is 100 s

    图  3  a为0.310 0 s-1, t为400 s时的车辆速度分布

    Figure  3.  Vehicle velocity distributions while a is 0.310 0 s-1 and t is 400 s

    图  4  a为0.777 8 s-1, t为100 s时的车辆速度分布

    Figure  4.  Vehicle velocity distributions while a is 0.777 8 s-1 and t is 100 s

    图  5  a为0.777 8 s-1, t为400 s时的车辆速度分布

    Figure  5.  Vehicle velocity distributions while a is 0.777 8 s-1 and t is 400 s

    图  6  速度迟滞环

    Figure  6.  Produce hysteresis loops of velocities

  • [1] 贾宁, 马寿峰. 考虑摩擦干扰的机非混合交通流元胞自动机仿真[J]. 系统仿真学报, 2011, 23(2): 390-394. https://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ201102036.htm

    JIA Ning, MA Shou-feng. Simulation of mixed traffic flow with friction interference using cellular automata[J]. Journal of System Simulation, 2011, 23(2): 390-394. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ201102036.htm
    [2] 钱勇生, 曾俊伟, 杜加伟, 等. 考虑意外事件对交通流影响的元胞自动机交通流模型[J]. 物理学报, 2011, 60(6): 103-112. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201106018.htm

    QIAN Yong-sheng, ZENG Jun-wei, DU Jia-wei, et al. Cellular automaton traffic flow model considering influence of accidents[J]. Acta Physica Sinica, 2011, 60(6): 103-112. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201106018.htm
    [3] BANDO M, HASEBE K, NAKAYAMA A, et al. Dynamical model of traffic congestion and numerical simulation[J]. Physical Review E, 1995, 51(2): 1035-1042. doi: 10.1103/PhysRevE.51.1035
    [4] CHRISTOPH W. Asymptotic solutions for a multi-anticipative car-following model[J]. Physica A, 1998, 260(4): 218-224.
    [5] ZHU Hui-bing, DAI Shi-qiang. Analysis of car-following model considering driver's physical delay in sensing headway[J]. Physica A, 2008, 387(13): 3290-3298. doi: 10.1016/j.physa.2008.01.103
    [6] SIPAHI R, NICULESCU S I. Stability of car following with human memory effects and automatic headway compensation[J]. Philosophical Transactions of Royal Society, 2010, 368(1928): 4563-4583.
    [7] 孙棣华, 李永福, 田川. 基于多前车位置及速度差信息的车辆跟驰模型[J]. 系统工程理论与实践, 2010, 30(7): 1326-1332. https://www.cnki.com.cn/Article/CJFDTOTAL-XTLL201007027.htm

    SUN Di-hua, LI Yong-fu, TIAN Chuan. Car-following model based on the information of multiple ahead and velocity difference[J]. Systems Engineering—Theory and Practice, 2010, 30(7): 1326-1332. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XTLL201007027.htm
    [8] HELBING D, TILCH B. Generalized force model of traffic dynamics[J]. Physical Review E, 1998, 58(1): 133-138. doi: 10.1103/PhysRevE.58.133
    [9] JIANG Rui, WU Qing-song, ZHU Zuo-jin. Full velocity difference model for a car following theory[J]. Physical Review E, 2001, 64(1): 63-66.
    [10] 王涛, 高自友, 赵小梅. 多速度差模型及稳定性分析[J]. 物理学报, 2006, 55(2): 634-640. doi: 10.3321/j.issn:1000-3290.2006.02.028

    WANG Tao, GAO Zi-you, ZHAO Xiao-mei. Multiple velocity difference model and its stability analysis[J]. Acta Physica Sinica, 2006, 55(2): 634-640. (in Chinese) doi: 10.3321/j.issn:1000-3290.2006.02.028
    [11] 彭光含, 孙棣华, 何恒攀. 交通流双车跟驰模型与数值仿真[J]. 物理学报, 2008, 57(12): 7541-7546. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB200812023.htm

    PENG Guang-han, SUN Di-hua, HE Heng-pan. Two-car following model of traffic flow and numerical simulation[J]. Acta Physica Sinica, 2008, 57(12): 7541-7546. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB200812023.htm
    [12] 彭光含. 交通流复杂耦合动态特性模拟研究[D]. 重庆: 重庆大学, 2009.

    PENG Guang-han. Simulation research on complicated coupling dynamical characteristics of traffic flow[D]. Chongqing: Chongqing University, 2009. (in Chinese)
    [13] TIAN Jun-fang, JIA Bin, LI Xin-gang, et al. A new car-following model considering velocity anticipation[J]. Chinese Physics B, 2010, 19(1): 197-203.
    [14] TREIBER M, HENNECHE A, HELBING D. Derivation, properties, and simulation of a gas-kinetic-based, nonlocal traffic model[J]. Physical Review E, 1999, 59(1): 239-253.
  • 加载中
图(6)
计量
  • 文章访问数:  822
  • HTML全文浏览量:  148
  • PDF下载量:  763
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-07-23
  • 刊出日期:  2011-12-25

目录

    /

    返回文章
    返回