-
摘要: 以棚洞结构为原型, 对滚石冲击作用下棚洞的接触力、位移、损伤与能量进行了研究。将滚石简化为刚性球体, 围岩和土体为理想弹塑性材料, 混凝土为弹塑性材料, 通过ABAQUS有限元, 模拟了不同速度与冲击角度下滚石冲击荷载对棚洞结构的动力响应。分析结果表明: 在冲击角不变时, 滚石速度越大产生的位移越大, 在速度不变时, 滚石的冲击角越小产生的位移越大; 混凝土防护结构损伤最严重的地方发生在与滚石接触的区域, 其次在斜腿柱上端和同柱子连接的横梁处, 在实际工程中应加强柱子上端与横梁连接处的强度; 棚洞主要通过混凝土防护结构来吸收和消耗冲击能, 土垫层吸收和消耗冲击能很有限, 为了缓解滚石冲击对混凝土防护结构的破坏, 可在棚洞支座处增设耗能减震器。Abstract: Shed tunnel structure was taken as prototype, and the contact force, displacement, damage, and energy of shed tunnel under rock-fall impact were studied.Rock-fall was simplified to rigid sphere, surrounding rock and soil were reduced to ideal elastic materials, and concrete was regarded as elastic-plastic material.The dynamic responses of rock-fall impact on shed tunnel structure at different speeds and incident angles were simulated by using ABAQUS finite element.Analysis result shows that when incident angle is unchanged, the greater rock-fall speed is, the greater the displacement is.When rock-fall speed is constant, the smaller rock-fall incident angle is, the greater the displacement is.The worst damage of concrete protective structure occurs at rock-fall contact area, the second damages are inclined leg pillar top and beam in connection with pillar, and the intensities of pillar top and beam joint should be strengthened in practical projects.Impact energy is mainly absorbed and consumed through the concrete protective structure of shed tunnel, the absorption and consumption of soil cushion layer are very limited.To alleviate the damage of rock-fall impact on the concrete protective structure, energy shock absorber can be added at shed tunnel bearing place.
-
表 1 混凝土压缩硬化系数
Table 1. Concrete compression hardening coefficients
表 2 混凝土拉伸硬化系数
Table 2. Concrete tension stiffening coefficients
表 3 各能量之间关系
Table 3. Relationship among energies
-
[1] BRIZMER V, KLIGERMAN Y, ETSION I. The effect of contact conditions and material properties on the elasticity terminus of a spherical contact[J]. International Journal of Solids and Structures, 2006, 43(18/19): 5736-5749. [2] WU Cheng-qing, HAO Hong. Numerical simulation of struc-tural response and damage to simultaneous ground shock and airblast loads[J]. International Journal of Impact Engineering, 2007, 34(3): 556-572. doi: 10.1016/j.ijimpeng.2005.11.003 [3] KAWAHARA S, MURO T. Effects of dry density and thickness of sandy soil on impact response due to rock-fall[J]. Journal of Terramechanics, 2006, 43(3): 329-340. doi: 10.1016/j.jterra.2005.05.009 [4] PICHLER B, HELLMICH C, MANG H A. Impact of rocks onto gravel design and evaluation of experiments[J]. International Journal of Impact Engineering, 2005, 31(5): 559-578. doi: 10.1016/j.ijimpeng.2004.01.007 [5] OLSSON R. Analytical prediction of large mass impact damage in composite laminates[J]. Composites Part A: AppliedScience and Manufacturing, 2001, 32(9): 1207-1215. doi: 10.1016/S1359-835X(01)00073-2 [6] 蒋树屏, 刘元雪, 黄伦海, 等. 环保型傍山隧道结构研究[J]. 中国公路学报, 2006, 19(1): 80-83, 103. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200601016.htmJIANG Shu-ping, LIU Yuan-xue, HUANG Lun-hai, et al. Research on environmental friendly structure of tunnel adja-cent to mountain[J]. China Journal of Highway and Transport, 2006, 19(1): 80-83, 103. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200601016.htm [7] 杨璐, 陈玳珩, 沈新普, 等. 高速公路防护栏支柱的水平基床反力[J]. 沈阳工业大学学报, 2010, 32(1): 115-120. https://www.cnki.com.cn/Article/CJFDTOTAL-SYGY201001026.htmYANG Lu, CHEN Dai-heng, SHEN Xin-pu, et al. Horizontal subgrade reaction of highway guardrail column[J]. Journal of Shenyang University of Technology, 2010, 32(1): 115-120. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SYGY201001026.htm [8] ZHENG Hong, GE Xiu-run, CAI Zhuo-fen. Crispy plastic rock analysis theory and its application[J]. Journal of Rock Mechanics and Engineering, 1997, 16(1): 8-21. [9] 何思明, 吴永. 新型耗能减震滚石棚洞作用机制研究[J]. 岩石力学与工程学报, 2010, 29(5): 926-932. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201005011.htmHE Si-ming, WU Yong. Research on cushioning mechanism of new-typed energy dissipative rock shed[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(5): 926-932. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201005011.htm [10] 高干, 刘元雪, 周家伍, 等. 新型棚洞结构抗震效应研究[J]. 后勤工程学院学报, 2009, 25(6): 11-16, 45. https://www.cnki.com.cn/Article/CJFDTOTAL-HQGC200906008.htmGAO Gan, LIU Yuan-xue, ZHOU Jia-wu, et al. Earthquake resistance effect research in the new shed-tunnel structure[J]. Journal of Logistical Engineering University, 2009, 25(6): 11-16, 45. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HQGC200906008.htm [11] 何思明, 沈均, 吴永. 滚石冲击荷载下棚洞结构动力响应[J]. 岩土力学, 2011, 32(3): 781-788. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201103024.htmHE Si-ming, SHEN Jun, WU Yong. Rock shed dynamic response to impact of rock-fall[J]. Rock and Soil Mechanics, 2011, 32(3): 781-788. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201103024.htm [12] REDDISH D J, STACE L R, VANICHKOBCHINDA P. Numerical simulation of the dynamic impact breakage testing of rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2005, 42(2): 167-176. [13] STRONGE W J, ASHCROFT A D C. Oblique impact of inflated balls at large deflections[J]. International Journal of Impact Engineering, 2007, 34(6): 1003-1019.