留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

客运专线斜拉桥梁轨相互作用设计参数

闫斌 戴公连 董林育

闫斌, 戴公连, 董林育. 客运专线斜拉桥梁轨相互作用设计参数[J]. 交通运输工程学报, 2012, 12(1): 31-37. doi: 10.19818/j.cnki.1671-1637.2012.01.006
引用本文: 闫斌, 戴公连, 董林育. 客运专线斜拉桥梁轨相互作用设计参数[J]. 交通运输工程学报, 2012, 12(1): 31-37. doi: 10.19818/j.cnki.1671-1637.2012.01.006
YAN Bin, DAI Gong-lian, DONG Lin-yu. Design parameters of track-bridge interaction on passenger dedicated line cable-stayed bridge[J]. Journal of Traffic and Transportation Engineering, 2012, 12(1): 31-37. doi: 10.19818/j.cnki.1671-1637.2012.01.006
Citation: YAN Bin, DAI Gong-lian, DONG Lin-yu. Design parameters of track-bridge interaction on passenger dedicated line cable-stayed bridge[J]. Journal of Traffic and Transportation Engineering, 2012, 12(1): 31-37. doi: 10.19818/j.cnki.1671-1637.2012.01.006

客运专线斜拉桥梁轨相互作用设计参数

doi: 10.19818/j.cnki.1671-1637.2012.01.006
基金项目: 

国家自然科学基金项目 50678176

详细信息
    作者简介:

    闫斌(1984-), 男, 河南郑州人, 中南大学工学博士研究生, 从事梁轨相互作用研究

    戴公连(1964-), 男, 河南夏邑人, 中南大学教授

  • 中图分类号: U213.912

Design parameters of track-bridge interaction on passenger dedicated line cable-stayed bridge

More Information
  • 摘要: 采用非线性弹簧模拟桥梁和轨道的相互作用, 根据相关文献的试验结果对模拟方法进行验证。以沪昆客运专线上某槽型截面独塔斜拉桥为算例, 采用大型通用有限元软件ANSYS建立了塔-索-轨-梁-墩统一的空间有限元模型, 对斜拉桥钢轨纵向力的传递规律进行了分析, 研究了纵向阻力模型、斜拉桥结构体系、温度荷载与风荷载等设计参数对钢轨纵向力的影响。分析结果表明: 钢轨纵向阻力可按理想弹塑性模型进行简化; 与漂浮体系相比, 塔梁固结可减小约30%的钢轨纵向力; 在计算钢轨伸缩力时可按照梁体升温15℃和拉索升温40℃加载; 在风速较大的地区, 风力引起的斜拉桥上钢轨纵向力可超过60kN。

     

  • 图  1  文献[1]中所采用的有限元模型

    Figure  1.  Finite element model in reference 1

    图  2  新有限元模型

    Figure  2.  New finite element model

    图  3  斜拉桥桥跨布置

    Figure  3.  Arrangement of cable-stayed bridge spans

    图  4  不同阻力模型下钢轨挠曲力

    Figure  4.  Rail bending forces under different resistance models

    图  5  不同约束方式下钢轨伸缩力

    Figure  5.  Rail expansion forces under different restraint plans

    图  6  不同约束方式下钢轨挠曲力

    Figure  6.  Rail bending forces under different restraint plans

    图  7  钢轨附加力

    Figure  7.  Rail additional forces

    表  1  不同刚臂刚度下钢轨挠曲力

    Table  1.   Rail bending forces with different rigid arm stiffnesses

    下载: 导出CSV

    表  2  模型计算结果

    Table  2.   Model calculation results

    下载: 导出CSV

    表  3  频率与振型对比

    Table  3.   Comparison of frequencies and vibration modes

    下载: 导出CSV

    表  4  道床纵向阻力模型

    Table  4.   Longitudinal resistance models of track bed

    下载: 导出CSV

    表  5  斜拉桥纵向约束方式

    Table  5.   Longitudinal restraint plans of cable-stayed bridge

    下载: 导出CSV

    表  6  最大钢轨伸缩力

    Table  6.   Maximum rail expansion forces

    下载: 导出CSV
  • [1] 卜一之. 高速铁路桥梁纵向力传递机理研究[D]. 成都: 西南交通大学, 1998.

    BU Yi-zhi. Research on the transmission mechanism of longitudinal force for high-speed railway bridges[D]. Chengdu: Southwest Jiaotong University, 1998. (in Chinese).
    [2] 徐庆元. 高速铁路桥上无缝线路纵向附加力三维有限元静力与动力分析研究[D]. 长沙: 中南大学, 2005.

    XU Qing-yuan. Static and dynamic 3Dfinite element analysis of additional longitudinal forces transmission between CWR and high-speed railway bridges[D]. Changsha: Central South University, 2005. (in Chinese).
    [3] 徐庆元, 陈秀方, 李树德. 高速铁路桥上无缝线路纵向附加力研究[J]. 中国铁道科学, 2006, 27(3): 8-12. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK200603001.htm

    XU Qing-yuan, CHEN Xiu-fang, LI Shu-de. Study on the additional longitudinal forces transmission between continuously welded rails and high-speed railway bridges[J]. China Railway Science, 2006, 27(3): 8-12. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK200603001.htm
    [4] 张建. 刚构桥上无缝线路的ANSYS分析及二次开发[D]. 长沙: 中南大学, 2007.

    ZHANG Jian. ANSYS analysis and secondary exploitation of CWR on rigid frame bridge[D]. Changsha: Central South University, 2007. (in Chinese).
    [5] SONG M K, NOH H C, CHOI C K. A new three-dimensional finite element analysis model of high-speed train-bridge interactions[J]. Engineering Structures, 2003, 25(13): 1611-1626. doi: 10.1016/S0141-0296(03)00133-0
    [6] RUGE P, WIDARDA D R, SCHMALZLIN G, et al. Longi-tudinal track-bridge interaction due to sudden change of coup-ling interface[J]. Computers and Structures, 2009, 87(1/2): 47-58.
    [7] BATTINI J M, MAHIR U K. A simple finite element to consider the non-linear influence of the ballast on vibrations of railway bridges[J]. Engineering Structures, 2011, 33(9): 2597-2602. doi: 10.1016/j.engstruct.2011.05.005
    [8] 阴存欣. 铁路桥梁纵向附加力的静动力非线性分析与仿真研究[D]. 北京: 中国铁道科学研究院, 2000.

    YIN Cun-xin. Study on nonlinear static and dynamic analysis and emulation of additional longitudinal forces in railway bridges[D]. Beijing: China Academy of Railway Sciences, 2000. (in Chinese).
    [9] FREIRE A M S, NEGRAO J H O, LOPES A V. Geomet-rical nonlinearities on the static analysis of highly flexible steel cable-stayed bridges[J]. Computers and Structures, 2006, 84(31/32): 2128-2140.
    [10] DANIELL W E, MACDONALD J H G. Improved finite ele-ment modelling of a cable-stayed bridge through systematic manual tuning[J]. Engineering Structures, 2007, 29(3): 358-371. doi: 10.1016/j.engstruct.2006.05.003
    [11] Germany DS899/59, special procedures on railway Shinkansen bridge[S].
    [12] LIM N H, PARK N H, KANG Y J. Stability of continuous welded rail track[J]. Computers and Structures, 2003, 81(22/23): 2219-2236.
    [13] 闫斌, 戴公连. 高速铁路斜拉桥梁轨相互作用[R]. 长沙: 中南大学, 2011.

    YAN Bin, DAI Gong-lian. Beam-track interaction on high-speed railway cable-stayed bridge[R]. Changsha: Central South University, 2011. (in Chinese).
    [14] RUGE P, BIRK C. Longitudinal forces in continuously welded rails on bridgedecks due to nonlinear track-bridge interaction[J]. Computers and Structures, 2007, 85(7/8): 458-475.
    [15] TB10002.1—2005, 铁路桥涵设计基本规范[S].

    TB10002.1—2005, fundamental code for design on railway bridge and culvert[S].
  • 加载中
图(7) / 表(6)
计量
  • 文章访问数:  838
  • HTML全文浏览量:  48
  • PDF下载量:  839
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-08-28
  • 刊出日期:  2012-02-25

目录

    /

    返回文章
    返回