留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

固定航路最优飞行冲突解脱模型

韩云祥 汤新民 韩松臣

韩云祥, 汤新民, 韩松臣. 固定航路最优飞行冲突解脱模型[J]. 交通运输工程学报, 2012, 12(1): 115-120. doi: 10.19818/j.cnki.1671-1637.2012.01.018
引用本文: 韩云祥, 汤新民, 韩松臣. 固定航路最优飞行冲突解脱模型[J]. 交通运输工程学报, 2012, 12(1): 115-120. doi: 10.19818/j.cnki.1671-1637.2012.01.018
HAN Yun-xiang, TANG Xin-min, HAN Song-chen. Conflict resolution model of optimal flight for fixation airway[J]. Journal of Traffic and Transportation Engineering, 2012, 12(1): 115-120. doi: 10.19818/j.cnki.1671-1637.2012.01.018
Citation: HAN Yun-xiang, TANG Xin-min, HAN Song-chen. Conflict resolution model of optimal flight for fixation airway[J]. Journal of Traffic and Transportation Engineering, 2012, 12(1): 115-120. doi: 10.19818/j.cnki.1671-1637.2012.01.018

固定航路最优飞行冲突解脱模型

doi: 10.19818/j.cnki.1671-1637.2012.01.018
基金项目: 

国家自然科学基金项目 61174180

江苏省自然科学基金项目 BK2010502

江苏省普通高校研究生科研创新计划项目 CX-LX11_0210

南京航空航天大学基本科研业务费专项科研项目 NS2010177

南京航空航天大学民航(飞行) 学院学生科技创新基金项目 BQ10078233006

详细信息
    作者简介:

    韩云祥(1985 -),男,河南驻马店人,南京航空航天大学工学博士研究生,从事空中交通管理研究

    韩松臣(1964 -),男,黑龙江哈尔滨人,南京航空航天大学教授,工学博士

  • 中图分类号: V355

Conflict resolution model of optimal flight for fixation airway

More Information
  • 摘要: 针对在固定航路条件下多个航空器之间的冲突解脱问题, 提出了改变航向的飞行策略, 比较了自由飞行条件下和固定航路飞行条件下的最优飞行冲突解脱模型。以航空器性能和航路空间为约束条件, 以冲突解脱时间为目标函数, 运用最优化控制理论和微分方程, 计算了不同初始条件下的总冲突解脱时间。计算结果表明: 当航空器的解脱终点从(80, 0)变为(65, 0)时, 总冲突解脱时间减小了32s;当航空器的解脱速度从833km.h-1降低为759km.h-1时, 总冲突解脱时间增大了12s;当航空器的初始位置由(20, 0)增大为(29, 0)时, 总冲突解脱时间仅增大了2s。航空器的解脱终点和解脱速度对冲突解脱时间影响较大, 而航空器的初始位置对冲突解脱时间影响较小。

     

  • 图  1  自由飞行轨迹

    Figure  1.  Free flight path

    图  2  固定航路下的运行轨迹

    Figure  2.  Flight path under fixation airway

    图  3  不同解脱终点下航空器2的航线轨迹

    Figure  3.  Flight paths of aircraft 2under different resolution endpoints

    图  4  不同解脱速度下航空器2的航线轨迹

    Figure  4.  Flight paths of aircraft 2under different resolution speeds

    图  5  不同初始位置下航空器2的航线轨迹

    Figure  5.  Flight paths of aircraft 2under different initial positions

    表  1  模型参数

    Table  1.   Model parameters

    表  2  不同解脱终点下航空器2的运行状态

    Table  2.   Flight states of aircraft 2under different resolution endpoints

    表  3  不同解脱速度下航空器2的运行状态

    Table  3.   Flight states of aircraft 2under different resolution speeds

    表  4  不同初始位置下航空器2的运行状态

    Table  4.   Flight states of aircraft 2under different initial positions

  • [1] 赵荣, 张京娟. 改进的遗传算法在飞行冲突解脱中的应用[J]. 电子测量技术, 2009, 32(11): 37-39. doi: 10.3969/j.issn.1002-7300.2009.11.011

    ZHAO Rong, ZHANG Jing-juan. Conflict resolution based on an improved genetic algorithm[J]. Electronic Measurement Technology, 2009, 32(11): 37-39. (in Chinese) doi: 10.3969/j.issn.1002-7300.2009.11.011
    [2] 杨尚文, 戴福青. 基于一种免疫遗传算法的自由飞行冲突解脱[J]. 航空计算技术, 2007, 37(1): 41-43. doi: 10.3969/j.issn.1671-654X.2007.01.012

    YANG Shang-wen, DAI Fu-qing. Conflict resolution in free flight based on an immune genetic algorithm[J]. Aeronautical Computer Technique, 2007, 37(1): 41-43. (in Chinese) doi: 10.3969/j.issn.1671-654X.2007.01.012
    [3] 裴志刚, 李华星, 王庆胜. 模拟退火遗传算法在飞行冲突解脱中的应用[J]. 交通与计算机, 2005, 23(1): 115-117. https://www.cnki.com.cn/Article/CJFDTOTAL-JTJS200501031.htm

    PEI Zhi-gang, LI Hua-xing, WANG Qing-sheng. Application of simulated annealing/ genetic algorithms to solving flight conflicts[J]. Computer and Communications, 2005, 23(1): 115-117. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JTJS200501031.htm
    [4] 刘星, 胡明华, 董襄宁. 遗传算法在飞行冲突解脱中的应用[J]. 南京航空航天大学学报, 2002, 34(1): 35-39. doi: 10.3969/j.issn.1005-2615.2002.01.008

    LIU Xing, HU Ming-hua, DONG Xiang-ning. Application of genetic algorithms for solving flight conflicts[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2002, 34(1): 35-39. (in Chinese) doi: 10.3969/j.issn.1005-2615.2002.01.008
    [5] 王洁宁, 袁志娟. 基于粒子群算法的飞行冲突解脱问题[J]. 中国民航大学学报, 2010, 28(4): 1-4. doi: 10.3969/j.issn.1001-5590.2010.04.001

    WANG Jie-ning, YUAN Zhi-juan. Study on resolution of flight conflicts based on particle swarm optimization[J]. Journal of Civil Aviation University of China, 2010, 28(4): 1-4. (in Chinese) doi: 10.3969/j.issn.1001-5590.2010.04.001
    [6] 郭茜, 聂润兔, 王超. 蚁群算法在解决空中交通飞行冲突中的应用[J]. 交通运输工程与信息学报, 2009, 7(2): 116-119. doi: 10.3969/j.issn.1672-4747.2009.02.021

    GUO Qian, NIE Run-tu, WANG Chao. Application of ant colony algorithm to aircraft conflict resolution[J]. Journal of Transportation Engineering and Information, 2009, 7(2): 116-119. (in Chinese) doi: 10.3969/j.issn.1672-4747.2009.02.021
    [7] 郭茜, 聂润兔. 改进蚁群算法在飞行冲突求解问题中的应用[J]. 计算机工程与设计, 2009, 30(11): 2769-2771. https://www.cnki.com.cn/Article/CJFDTOTAL-SJSJ200911046.htm

    GUO Qian, NIE Run-tu. Aircraft conflict resolution by using improved ant colony algorithm[J]. Computer Engineering and Design, 2009, 30(11): 2769-2771. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SJSJ200911046.htm
    [8] 郭茜, 聂润兔, 王超. 多机飞行冲突解决方法研究[J]. 武汉理工大学学报: 交通科学与工程版, 2010, 34(3): 460-463. doi: 10.3963/j.issn.1006-2823.2010.03.008

    GUO Qian, NIE Run-tu, W ANG Chao. Study of multiaircraft conflict resolution method[J]. Journal of Wuhan University of Technology: T ransportation Science and Engineering, 2010, 34(3): 460-463. (in Chinese) doi: 10.3963/j.issn.1006-2823.2010.03.008
    [9] 郭茜, 聂润兔. 改进人工势场法在解决飞行冲突问题中的应用[J]. 交通与计算机, 2008, 26(5): 103-106. https://www.cnki.com.cn/Article/CJFDTOTAL-JTJS200805029.htm

    GUO Qian, NIE Run-tu. Application of improved artificial field method in aircraft conflict resolution[J]. Computer and Communications, 2008, 26(5): 103-106. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JTJS200805029.htm
    [10] 戴玲, 夏学知. 多A gent技术在飞行冲突解脱中的应用[J]. 舰船电子工程, 2008, 28(3): 62-64. doi: 10.3969/j.issn.1627-9730.2008.03.019

    DAI Ling, XIA Xue-zhi. Application of multi-agent in flightconflict resolution[J]. Ship Electronic Engineering, 2008, 28(3): 62-64. (in Chinese) doi: 10.3969/j.issn.1627-9730.2008.03.019
    [11] ARCHIBALD J K, HILL J C, JEPSEN N A, et al. A satisficing approach to aircraft conflict resolution[J]. IEEE Transactions on Systems, M an and Cybernetics- Part C: Applications and Reviews, 2008, 38(4): 510-521.
    [12] CLEMENTS J C. The optimal control of collision avoidance trajectories in air traffic management[J]. Transportation Research Part B: Methodological, 1999, 33(4): 265-280. doi: 10.1016/S0191-2615(98)00031-9
    [13] FRIEDMAN M F. Decision analysis and optimality in air traffic control conflict resolution: Ⅱ. optimal heading(vectoring) control in a linear planar configuration[J]. Transportation Research Part B: Methodological, 1991, 25(1): 39-53. doi: 10.1016/0191-2615(91)90012-8
    [14] FRIEDMAN M F. Decision analysis and optimality in air traffic control conflict resolution. I. optimal timing of speed control in a linear planar configuration[J]. Transportation Research Part B: Methodological, 1988, 22(3): 207-216. doi: 10.1016/0191-2615(88)90016-1
    [15] TOMLIN C, PAPPAS G J, SASTRY S. Conflict resolution for air traffic management: a study in multi-agent hybrid systems[J]. IEEE Transactions on Automatic Control, 1998, 43(4): 509-521. doi: 10.1109/9.664154
    [16] TOMLIN C, MITCHELL I, GHOSH R. Safety verification of conflict resolution maneuvers[J]. IEEE Transactions on Intelligent Transportation Systems, 2001, 2(2): 110-120. doi: 10.1109/6979.928722
    [17] TOMLIN C J, LYGEROS J, SHANKAR SASTRY S. A game theoretic approach to controller design for hybrid systems[J]. Proceedings of the IEEE, 2000, 88(7): 949-970. doi: 10.1109/5.871303
    [18] INGALLS B. Conflict resolution in air traffic management using the methods of optimal control theory[D]. Halifax: Dalhousie University, 1997.
    [19] KUCHAR J K, YANG L C. A review of conflict detection and resolution modeling methods[J]. IEEE Transactions on Intelligent Transportation Systems, 2000, 1(4): 179-189. doi: 10.1109/6979.898217
    [20] PALLOTTINO L, FERON E M, BICCHI A. Conflict resolution problems for air traffic management systems solved with mixed integer programming[J]. IEEE Transactions on Intelligent Transportation Systems, 2002, 3(1): 3-11. doi: 10.1109/6979.994791
    [21] NIEDRINGHAUS W P. Maneuver option manager: automated simplification of complex air traffic control problems[J]. IEEE Transactions on Systems, Man and Cybernetics, 1992, 22(5): 1047-1057.
    [22] ALLIOT J M, DURAND N, GRANGER G. Faces: a free flight autonomous and coordinated embarked solver(1998) [J]. Air Traffic Control Quarterly, 2000, 8(6): 109-130.
    [23] 何晓菊, 廖志武. 基于动态调速的定航线飞行冲突探测与解脱[J]. 计算机应用, 2010, 30(2): 540-542. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJY201002073.htm

    HE Xiao-ju, LIAO Zhi-wu. Airline flying conflict survey and extrication based on dynamic velocity modulation[J]. Journal of Computer Applications, 2010, 30(2): 540-542. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSJY201002073.htm
    [24] 夏怡凡, 朱允民, 马洪, 等. 空中交通冲突调速最优解决方案[J]. 四川大学学报: 自然科学版, 2006, 43(5): 955-961. https://www.cnki.com.cn/Article/CJFDTOTAL-SCDX200605001.htm

    XIA Yi-fan, ZHU Yun-min, MA Hong, et al. An optimal conflict resolution by adjusting the velocity in air traffic[J]. Journal of Sichuan University: N atural Science Edition, 2006, 43(5): 955-961. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SCDX200605001.htm
    [25] MENON R K, SWERIDUK G D, SRKDHAR B. Optimal strategies for free-flight air traffic conflict resolution[J]. Journal of Guidance, Control and Dynamics, 1999, 22(2): 202-211.
    [26] DURAND N, ALLIOT J N, CHANSOU O. Optimal resolution of en-route conflicts[J]. Air Traffic Control Quarterly. 1995, 3(3): 139-161.
  • 加载中
图(5) / 表(4)
计量
  • 文章访问数:  720
  • HTML全文浏览量:  86
  • PDF下载量:  831
  • 被引次数: 0
出版历程
  • 刊出日期:  2012-02-25

目录

    /

    返回文章
    返回