留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Design method of no-fines porous concrete composition based on vibration compaction

HU Li-qun SHA Ai-min ZHANG Sha-sha

胡力群, 沙爱民, 张沙沙. 振动压实无砂多孔混凝土组成设计方法[J]. 交通运输工程学报, 2012, 12(2): 1-9. doi: 10.19818/j.cnki.1671-1637.2012.02.001
引用本文: 胡力群, 沙爱民, 张沙沙. 振动压实无砂多孔混凝土组成设计方法[J]. 交通运输工程学报, 2012, 12(2): 1-9. doi: 10.19818/j.cnki.1671-1637.2012.02.001
HU Li-qun, SHA Ai-min, ZHANG Sha-sha. Design method of no-fines porous concrete composition based on vibration compaction[J]. Journal of Traffic and Transportation Engineering, 2012, 12(2): 1-9. doi: 10.19818/j.cnki.1671-1637.2012.02.001
Citation: HU Li-qun, SHA Ai-min, ZHANG Sha-sha. Design method of no-fines porous concrete composition based on vibration compaction[J]. Journal of Traffic and Transportation Engineering, 2012, 12(2): 1-9. doi: 10.19818/j.cnki.1671-1637.2012.02.001

振动压实无砂多孔混凝土组成设计方法

doi: 10.19818/j.cnki.1671-1637.2012.02.001
基金项目: 

New Century Excellent Talents in University NCET-08-0748

National Natural Science Foundation of China 50878027

"Eleventh Five-Year" National Science and Technology Support Program 2006BAJ18B05

Special Fund for Basic Scientific Research of Central Colleges CHD2010JC107

Special Fund for Basic Scientific Research of Central Colleges CHD2011TD014

详细信息
  • 中图分类号: U14.1

Design method of no-fines porous concrete composition based on vibration compaction

Funds: 

New Century Excellent Talents in University NCET-08-0748

National Natural Science Foundation of China 50878027

"Eleventh Five-Year" National Science and Technology Support Program 2006BAJ18B05

Special Fund for Basic Scientific Research of Central Colleges CHD2010JC107

Special Fund for Basic Scientific Research of Central Colleges CHD2011TD014

More Information
    Author Bio:

    HU Li-qun(1971-), Male, Xi'an, Shaanxi, Associate Professor of Chang'an University, PhD, Researchon Road Structure and Materials, +86-29-82334826, hlq123@126.com

  • 摘要: 采用浆体贯入度试验方法, 研究了不同水粉质量比的水泥净浆、水泥粉煤灰浆体和水泥硅灰浆体粘稠度变化规律, 分析了混合料拌和过程中浆体与集料的粘附状况以及振动压实下混合料浆体析漏情况, 提出了适合振动压实工况的无砂多孔混凝土组成设计方法。分析结果表明: 在混合料拌和过程中, 随着浆体贯入度的增大, 浆体在集料上的裹覆量先增大后减小, 贯入度在20~40 mm时的裹覆能力较强; 在振动压实条件下, 浆体不出现析漏且试件完整时, 浆体贯入度在20~25 mm之间; 设计的孔隙率为21.8%的无砂水泥混凝土, 试件内部孔隙均匀, 28 d抗压强度能够达到22.8 MPa, 抗折强度达到3.4 MPa。

     

  • Figure  1.  Paste viscosity test equipment

    1—Support frame; 2—Additional weight; 3—Steel penetration stem; 4—Guide ring; 5—Glass beaker; 6—Paste

    Figure  2.  Test results of paste viscosities

    Figure  3.  Test results of paste wrapped weights

    Figure  4.  Vibration compaction test equipment

    1—Framework; 2—Up clump weight; 3—Eccentric; 4—Rubber; 5—Down clump weight; 6—Compactor; 7—Steel mould; 8—Drive shaft; 9—Electromotor; 10—Frequency converter

    Figure  5.  Demoulding statuses

    Figure  6.  Design flow of no-fines porous concrete composition

    Figure  7.  Sections of no-fines porous concrete cylinder specimen

    Figure  8.  Compressive strength test

    Table  1.   Cement performance indexes

    Density/(g·cm-3) Setting time/min Flexural strength/MPa Compressive strength/MPa
    Initial setting time Final setting time 3 d 28 d 3 d 28 d
    3.05 165 230 3.8 6.8 21.8 43.4
    下载: 导出CSV

    Table  2.   Properties of fly ash

    Composition content/% Loss on ignition/% Density/(g·cm-3) Water content/% Specific surface area/(m2·g-1)
    SiO2 Al2O3 Fe2O3 CaO MgO
    52.45 31.28 5.13 2.20 0.39 2.42 1.90 0.80 1.50
    下载: 导出CSV

    Table  3.   Properties of silica fume

    Composition content/% Loss on ignition/% Density/(g·cm-3) Water content/% Specific surface area/(m2·g-1)
    SiO2 Al2O3 Fe2O3 CaO MgO
    87.38 0.64 0.81 1.12 1.45 1.03 2.20 0.60 21.4
    下载: 导出CSV

    Table  4.   Coarse aggregate gradations

    Aggregate type Each sieve pore(mm) passing rate/%
    13.2 9.5 4.75 2.36
    A 100 0 0
    B 100 0 0
    C 100 84 24 0
    下载: 导出CSV

    Table  5.   Proportions of different pastes

    Paste type Water to powder ratio by weight Water con-sumption/g Cement con-sumption/g Fly ash con-sumption/g Silica fume consumption/g
    Cement paste 0.20 60 300
    0.25 75 300
    0.30 90 300
    0.35 105 300
    0.40 120 300
    Cement fly ash paste 0.20 60 260 40
    0.25 75 260 40
    0.30 90 260 40
    0.35 105 260 40
    0.40 120 260 40
    Cement silica fume paste 0.20 60 260 40
    0.25 75 260 40
    0.30 90 260 40
    0.35 105 260 40
    0.40 120 260 40
    下载: 导出CSV

    Table  6.   Grades of molding specimen

    Grade Molding phenomenon description
    Paste stripping situation Paste leakage situation Void status Demoulding status
    E No stripping No leakage Distribute uniformly, and no clogging Shape well without loosing
    F Strip slightly Leak slightly Be clogged partly Loose partly
    G Strip seriously Flow to the bottom of specimen Be clogged seriously Can not be shaped
    下载: 导出CSV

    Table  7.   Test results of paste

    Paste type Cement paste Cement fly ash paste Cement silica fume paste
    Water to powder ratio/% 0.305 0.315 0.320
    Wet density/(g·cm-3) 2.632 2.394 2.414
    Flexural strength/MPa 4.5 5.3 6.3
    下载: 导出CSV

    Table  8.   Aggregate gradation

    Particle size/mm 19 13.2 9.5 4.75
    Passing rate/% 100 85 45 0
    下载: 导出CSV

    Table  9.   Test results of no-fines porous concrete

    Test index 28 d compressive strength/MPa 28 d flexural strength/MPa Void ratio/%
    Value 22.8 3.4 21.8
    下载: 导出CSV
  • [1] SUN Dao-sheng, HU Pu-hua, DUAN Jia-chao, et al. Preliminary study of preparation of non-sand big-hole planting concrete[J]. Journal of Anhui Institute of Architecture and Industry, 2004, 12(1): 35-39. https://en.cnki.com.cn/Article_en/CJFDTOTAL-AHJG200401008.htm
    [2] HUO Liang. Preparation, properties of pervius concrete pavement material[D]. Nanjing: Southeast University, 2004.
    [3] ZHAO Ya-lan, XING Xiang-yang. Structure and construction technology of low-noise anti-skid cement concrete pavement[J]. Road Machinery and Construction Mechanization, 2009, 26(6): 43-46. https://en.cnki.com.cn/Article_en/CJFDTotal-ZLJX200906024.htm
    [4] KIM H K, LEE H K. Influence of cement flow and aggregate type on the mechanical and acoustic characteristics of porous concrete[J]. Applied Acoustics, 2010, 71(7): 607-615. doi: 10.1016/j.apacoust.2010.02.001
    [5] PENG Liang-tao, YANG Cheng-zhong, MIN Chang-hua, et al. Analysis of measures of reducing noises for cement concrete[J]. Road Machinery and Construction Mechanization, 2007, 24(10): 30-32.
    [6] PUTMAN B J, NEPTUNE A I. Comparison of test specimen preparation techniques for pervious concrete pavements[J]. Construction and Building Materials, 2011, 25(8): 3480-3485. doi: 10.1016/j.conbuildmat.2011.03.039
    [7] CHINDAPRASIRT P, HATANAKA S, MISHIMA N, et al. Effects of binder strength and aggregate size on the compres-sive strength and void ratio of porous concrete[J]. International Journal of Minerals, Metallurgy and Materials, 2009, 16(6): 714-719. https://www.sciencedirect.com/science/article/pii/S1674479910600180
    [8] SHENG Yan-ping, CHEN Shuan-fa, ZHENG Mu-lian, et al. Mix design method of porous concrete with non-vibration molding[J]. Journal of Traffic and Transportation Engineering, 2009, 9(1): 44-49.
    [9] TAO Xin-ming. Non-fines macroporous concrete mixing ratio design, forming and curing[J]. Concrete, 2010(10): 136-138, 141.
    [10] TIAN Bo, NIU Kai-min, TAN Hua, et al. Research on indoor shaping methods of porous lean cement concrete used as a base material[J]. Highway, 2006(1): 150-154.
    [11] CHEN Yu, ZHANG Qi-sen, GAO Ying-li. Experiment on mechanical performances of porous cement concrete applied to surface layer of highway pavement[J]. China Journal of Highway and Transport, 2010, 23(2): 18-24.
    [12] LI Xue-jun, WANG Ming-xiang. Research on no-fines concrete[J]. Water Resources and Water Engineering, 1997, 8(4): 28-31.
    [13] XU Fei, XIAO Dang-qi. Research on mix proportion of nofines and porous concrete[J]. Journal of Water Resources and Architectural Engineering, 2005, 3(4): 24-26, 38. https://oversea.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFD2005&filename=FSJS200504006
    [14] LIU Juan-hong, WANG Sheng-yong, WANG Bo, et al. No-fines pervious concrete in the Beijing North-South Long Street road engineering[J]. Concrete, 2006(3): 81-83. https://en.cnki.com.cn/Article_en/CJFDTOTAL-HLTF200603019.htm
    [15] LI Qing-quan, LI Zhi-gang. Study on performance of modified no-fines concrete[J]. Journal of Highway and Transpor-tation Research and Development, 2009, 26(1): 61-65.
    [16] LIAN C, ZHUGE Y, BEECHAM S. The relationship between porosity and strength for porous concrete[J]. Construction and Building Materials, 2011, 25(11): 4294-4298. doi: 10.1016/j.conbuildmat.2011.05.005
    [17] ZHENG Mu-lian, CHEN Shuan-fa, WANG Chong-tao. Strength character of porous concrete[J]. Journal of Chang'an University: Natura 1 Science Edition, 2006, 26(4): 20-25.
    [18] ZHANG Xian-chao, YIN Jian, CHI Yi. Summary of performance for pervious concrete[J]. Concrete, 2010(12): 47-50. https://oversea.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFD2010&filename=HLTF201012015
  • 加载中
图(8) / 表(9)
计量
  • 文章访问数:  724
  • HTML全文浏览量:  134
  • PDF下载量:  626
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-11-22
  • 刊出日期:  2012-04-25

目录

    /

    返回文章
    返回