留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Energy availability of active suspension without external energy supply

CHEN Shi-an WANG Yong-gang WANG Dong HE Ren LIU Hong-guang

陈士安, 王勇刚, 王东, 何仁, 刘红光. 无外界动力源主动悬架的能量可用性[J]. 交通运输工程学报, 2012, 12(2): 46-52. doi: 10.19818/j.cnki.1671-1637.2012.02.007
引用本文: 陈士安, 王勇刚, 王东, 何仁, 刘红光. 无外界动力源主动悬架的能量可用性[J]. 交通运输工程学报, 2012, 12(2): 46-52. doi: 10.19818/j.cnki.1671-1637.2012.02.007
CHEN Shi-an, WANG Yong-gang, WANG Dong, HE Ren, LIU Hong-guang. Energy availability of active suspension without external energy supply[J]. Journal of Traffic and Transportation Engineering, 2012, 12(2): 46-52. doi: 10.19818/j.cnki.1671-1637.2012.02.007
Citation: CHEN Shi-an, WANG Yong-gang, WANG Dong, HE Ren, LIU Hong-guang. Energy availability of active suspension without external energy supply[J]. Journal of Traffic and Transportation Engineering, 2012, 12(2): 46-52. doi: 10.19818/j.cnki.1671-1637.2012.02.007

无外界动力源主动悬架的能量可用性

doi: 10.19818/j.cnki.1671-1637.2012.02.007
基金项目: 

National Natural Science Foundation of China 50805066

详细信息
  • 中图分类号: U463.33

Energy availability of active suspension without external energy supply

Funds: 

National Natural Science Foundation of China 50805066

More Information
    Author Bio:

    CHEN Shi-an(1973-), Male, Jingzhou, Hubei, Associate Professor of Jiangsu University, PhD, Researchon Automotive Technology of Vibration Analysis and Control, Energy Conservation and Active Safety, +86-511-88791872, chenshian73@ujs.edu.cn

  • 摘要: 将无外界动力源的主动悬架在半主动模式下吸收平均功率与在主动模式下消耗平均功率的绝对值比作为能量可用性的评价指标, 分析了优化PID与LQG控制主动悬架的性能与能量可用性。针对某重型汽车的1/4车主动悬架模型, 设计了PID与LQG控制器。当悬架阻尼比为0.1时, 以悬架二次型性能指标为目标函数, 利用遗传算法对PID控制器参数进行了优化。发现优化PID控制主动悬架的二次型性能指标较LQG控制主动悬架大3.32%, 优化PID与LQG控制主动悬架的能量可用性评价指标分别为17.15和226.33。分析结果表明: LQG控制主动悬架的性能略优于优化PID控制主动悬架; 2种主动悬架均满足能量可用性要求, 且LQG控制主动悬架的能量可用性远优于优化PID控制主动悬架。

     

  • Figure  1.  Working principle of ASWEES

    Figure  2.  Structure of PID controller

    Figure  3.  Optimization flow of PID controller parameters

    Figure  4.  J-G curve

    Figure  5.  J-t curves

    Figure  6.  P-t curves based on optimized PID control

    Figure  7.  P-t curves based on LQG control

    Figure  8.  Curves of Ws/Wa-t

    Table  1.   Parameters of passive suspension and road inputs

    Parameter Value Parameter Value
    m1/kg 350 k1/(N·m-1) 3.0×106
    m2/kg 5 000 k2/(N·m-1) 5.05×105
    c/(N·s·m-1) 30 150 Gq(n0)/(m2·m-1) 2.56×10-4
    f0/Hz 0.22
    下载: 导出CSV

    Table  2.   Subjective weights

    W1 W2 W3 γ1 γ2
    0.649 1 0.279 0 0.071 9 0.429 8 0.110 8
    下载: 导出CSV

    Table  3.   σ2(a2), σ2(x1-q) andσ2(fd)

    σ2(a2)/(m·s-2)2 σ2(x1-q)/m2 σ2(fd)/m2
    4.516 2 1.847 5×10-5 1.557 7×10-4
    下载: 导出CSV

    Table  4.   Proportional coefficients and weights

    Coefficient Value Weight Value
    β1 2 444 δ1 105 060
    β2 27 081 δ2 3 000.6
    下载: 导出CSV

    Table  5.   Parameter settings

    Parameter Value Parameter Value
    Max number of generation 50 Mutation rate 0.017 5
    Initial population size 60 Scope of kp [0, 20 000]
    Crossover rate 0.7 Scope of ki [0, 200 000]
    Generation gap 0.9 Scope of kd [0, 10]
    下载: 导出CSV

    Table  6.   Data ofσ(a2), σ(x1-q), σ(fd), J, Psand Pa

    Parameter Optimized PID control LQG control
    σ(a2) /(m·s-2) 1.228 8 1.380 3
    σ(fd)/m 0.014 2 0.012 9
    σ(x1-q)/m 0.004 8 0.004 4
    J 4.580 9 4.428 6
    Ps/kW -1.179 2 -2.919 6
    Pa/kW 0.068 4 0.128 9
    下载: 导出CSV
  • [1] ZAREH S H, SARRAFAN A, KHAYYAT A A, et al. Intelligent semi-active vibration control of eleven degrees of freedom suspension system using magnetorheological dampers[J]. Journal of Mechanical Science and Technology, 2012, 26(2): 323-334. doi: 10.1007/s12206-011-1007-6
    [2] CREWS J H, MATTSON M G, BUCKNER G D. Multi-objective control optimization for semi-active vehicle suspensions[J]. Journal of Sound and Vibration, 2011, 330(23): 5502-5516. doi: 10.1016/j.jsv.2011.05.036
    [3] MALEKSHAHI A, MIRZAEI M. Designing a non-linear tracking controller for vehicle active suspension systems using an optimization process[J]. International Journal of Automotive Technology, 2012, 13(2): 263-271. doi: 10.1007/s12239-012-0023-6
    [4] YIM S. Design of a robust controller for rollover prevention with active suspension and differential braking[J]. Journal of Mechanical Science and Technology, 2012, 26(1): 213-222. doi: 10.1007/s12206-011-0915-9
    [5] LIU Shu-bo, ZHAO Ding-xuan. H/generalized H2 static output feedback control method for active suspension[J]. China Journal of Highway and Transport, 2009, 22(4): 122-126.
    [6] EBRAHIMI B, BOLANDHEMMAT H, KHAMESEE M B, et al. A hybrid electromagnetic shock absorber for active vehicle suspension systems[J]. Vehicle System Dynamics, 2011, 49(1/2): 311-332.
    [7] RYU S, KIM Y, PARK Y. Robust H preview control of an active suspension system with norm-bounded uncertainties[J]. International Journal of Automotive Technology, 2008, 9(5): 585-592. doi: 10.1007/s12239-008-0069-7
    [8] GAO Hui-jun, SUN Wei-chao, SHI Peng. Robust sampled-data H control for vehicle active suspension systems[J]. IEEE Transactions on Control Systems Technology, 2010, 18(1): 238-245. doi: 10.1109/TCST.2009.2015653
    [9] DAVID S B, BOBROVSKY B Z. Actively controlled vehicle suspension with energy regeneration capabilities[J]. Vehicle System Dynamics, 2011, 49(6): 833-854. doi: 10.1080/00423114.2010.488295
    [10] MONTAZERI-GH M, SOLEYMANI M. Investigation of theenergy regeneration of active suspension system in hybridelectric vehicles[J]. IEEE Transactions on Industrial Elec-tronics, 2010, 57(3): 918-925. doi: 10.1109/TIE.2009.2034682
    [11] HUANG K, YU F, ZHANG Y. Active controller design foran electromagnetic energy-regenerative suspension[J]. International Journal of Automotive Technology, 2011, 12(6): 877-885. doi: 10.1007/s12239-011-0100-2
    [12] CHEN Shi-an, HE Ren, LU Sen-lin. New reclaiming energy suspension and its working principle[J]. Chinese Journal of Mechanical Engineering, 2007, 43(11): 177-182. doi: 10.3901/JME.2007.11.177
    [13] YU Chang-miao, WANG Wei-hua, WANG Qing-nian. Damping characteristic and its influence factors in energy regenerative sus-pension[J]. Journal of Jilin University: Engineering and Technology Edition, 2010, 40(6): 1482-1486.
    [14] YU Chang-miao, WANG Wei-hua, WANG Qing-nian. Design of electromagnetic energy regenerative suspension system and analysis of energy conservation[J]. Automobile Technology, 2010(2): 21-25.
    [15] HUANG Kun, YU Fan, ZHANG Yong-chao. Active control of energy-regenerative electromagnetic suspension based on energy flow analysis[J]. Journal of Shanghai Jiaotong University, 2011, 45(7): 1068-1073.
    [16] TAO Yong-hua. Application of New PID Control[M]. 2nd Edition. Beijing: China Machine Press, 2003.
    [17] ZENG Jie-ru, GU Zheng-qi, LI Wei-ping, et al. A research on the fuzzy PID control for vehicle semi-active suspension based on genetic algorithm[J]. Automotive Engineering, 2010, 32(5): 429-433.
    [18] WANG Chen, WANG Shi-cheng. Parameters setting of PIDcontroller based on genetic algorithm[J]. Computer Simulation, 2005, 22(10): 112-114, 143.
    [19] JIN Y, YU D J. Adaptive neuron control using an integrated error approach with application to active suspensions[J]. International Journal of Automotive Technology, 2008, 9(3): 329-335. doi: 10.1007/s12239-008-0040-7
    [20] CHEN Shi-an, QIU Feng, HE Ren, et al. A method for choosing weights in a suspension LQG control[J]. Journal of Vibration and Shock, 2008, 27(2): 65-68, 176.
  • 加载中
图(8) / 表(6)
计量
  • 文章访问数:  753
  • HTML全文浏览量:  103
  • PDF下载量:  738
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-12-22
  • 刊出日期:  2012-04-25

目录

    /

    返回文章
    返回