-
摘要: 为了分析交通事故起数与时间、道路空间结构及交通运行环境等潜在影响因素之间的关系, 从时间和空间角度选择9个自变量, 分别从路段长度一致和路段坡度一致2个角度, 构建交通事故起数时段、周日和月分布模型。以某典型交通事故多发段为例, 分别运用泊松回归模型、负二项回归模型、零堆积泊松回归模型和零堆积负二项回归模型拟合交通事故起数时段、周日和月分布模型, 根据模型的拟合优度检验, 分别确定3个模型的最佳形式, 从而构建交通事故起数时空分析模型。研究结果表明: 从AIC准则和BIC准则来看, 基于路段长度一致的交通事故起数时段、月分布模型采用负二项回归模型拟合效果较好, 其他模型选择泊松回归模型拟合效果较好; 基于路段长度一致的交通事故起数时段、周日、月分布模型的预测误差小于基于路段坡度一致的交通事故起数时段、周日、月分布模型。Abstract: In order to analyze the relationships among traffic accident frequency and potential influencing factors such as time, road space structure and traffic running environment, nine independent variables were selected from the aspects of time and space, two kinds of section divided methods were adopted, which were fixed-length consistent segment and longitudinal grade consistent segment, and the hourly, weekly and monthly distribution models of traffic accident frequency were constructed.A typical accident-prone section was selected, and Poisson regression model, negative binomial regression model, zero-inflated Poisson regression model and zero-inflated negative binomial regression model were used to fit hourly, weekly and monthly distribution models respectively.The best forms of three models were determined, and the temporal-spatial analysis model of traffic accident frequency was established based on the goodness of fit test.Analysis result shows that the fitting effect of negative binomial regression model is better for traffic accident hourly and monthly distribution models based on fixed-length consistent segment from the views of AIC and BIC, and the fitting effect of Poisson regression model is better for other models.The prediction errors of traffic accident hourly, weekly and monthly distribution model based on fixed-length consistent segment are less than those of longitudinal grade consistent segment.4 tabs, 15 refs.
-
表 1 不同路段和时段的交通事故起数
Table 1. Traffic accident frequencies of different segments and hours
表 2 路段长度一致的时段分布模型拟合优度
Table 2. Goodness of fit for hourly distribution model based on fixed-length segment
表 3 交通事故起数模型
Table 3. Traffic accident frequency models
表 4 交通事故起数模型对比
Table 4. Comparison of traffic accident frequency models
-
[1] 公安部交通管理局. 中华人民共和国道路交通事故统计年报(2010年度)[R]. 无锡: 公安部交通管理科学研究所, 2011. [2] 李相勇, 张南, 张学尽, 等. 高速公路交通事故致因的人机工程学分析[J]. 公路, 2003(8): 108-112. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL2003S1034.htmLI Xiang-yong, ZHANG Nan, ZHANG Xue-jin, et al. Analy-sis of factors affecting expressway traffic accidents based on ergonomics[J]. Highway, 2003(8): 108-112. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL2003S1034.htm [3] 李铁洪, 吴华金. 长直线接小半径曲线公路交通事故成因及预防对策[J]. 中国公路学报, 2007, 20(1): 35-40. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200701006.htmLI Tie-hong, WU Hua-jin. Causes and countermeasures of highway traffic accidents in long straight line combined with sharp curve[J]. China Journal of Highway and Transport, 2007, 20(1): 35-40. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200701006.htm [4] 张生瑞, 马壮林, 石强. 高速公路隧道群交通事故分布特点及预防对策[J]. 长安大学学报: 自然科学版, 2007, 27(1): 63-66. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL200701014.htmZHANG Sheng-rui, MA Zhuang-lin, SHI Qiang. Distribu-tion characteristics and countermeasures of traffic accidents in expressway tunnel group[J]. Journal of Chang'an University: Natural Science Edition, 2007, 27(1): 63-66. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL200701014.htm [5] 陈斌, 袁伟, 付锐, 等. 连续长大下坡路段交通事故特征分析[J]. 交通运输工程学报, 2009, 9(4): 75-78, 84. http://transport.chd.edu.cn/article/id/200904015CHEN Bin, YUAN Wei, FU Rui, et al. Analysis of traffic accident characteristic on continuous long downgrade section[J]. Journal of Traffic and Transportation Engineering, 2009, 9(4): 75-78, 84. (in Chinese). http://transport.chd.edu.cn/article/id/200904015 [6] MIAOU S P, LUM H. Modeling vehicle accidents and high-way geometric design relationships[J]. Accident Analysis and Prevention, 1993, 25(6): 689-709. doi: 10.1016/0001-4575(93)90034-T [7] KRAUS J F, ANDERSON C L, ARZEMANIAN S, et al. Epidemiological aspects of fatal and severe injury urban free-way crashes[J]. Accident Analysis and Prevention, 1993, 25(3): 229-239. doi: 10.1016/0001-4575(93)90018-R [8] HAUER E, NG J C N, LOVELL J. Estimation of safety at signalized intersections(with discussion and closure)[J]. Transportation Research Record, 1988(1185): 48-61. [9] HINDE J, DEMETRIO C G B. Overdispersion: models and estimation[J]. Computational Statistics and Data Analysis, 1998, 27(2): 151-170. https://www.sciencedirect.com/science/article/pii/S0167947398000073 [10] LEE J, MANNERING F. Impact of roadside features on the frequency and severity of run-off-roadway accidents: an empirical analysis[J]. Accident Analysis and Prevention, 2002, 34(2): 149-161. https://www.sciencedirect.com/science/article/pii/S0001457501000094 [11] KUMARA S S P, CHIN H C. Modeling accident occurrence at signalized tee intersections with special emphasis on excess zeros[J]. Traffic Injury Prevention, 2003, 4(1): 53-57. [12] LORD D, WASHINGTON S P, IVAN J N. Poisson, Poisson-gamma and zero-inflated regression models of motor vehicle crashes: balancing statistical fit and theory[J]. Accident Analysis and Prevention, 2005, 37(1): 35-46. [13] PERCO P. Influence of the general character of horizontal alignment on operating speed of two-lane rural roads[J]. Transportation Research Record, 2008(2075): 16-23. [14] 罗石贵, 周伟. 道路交通事故多发点鉴定方法探讨[J]. 西安公路交通大学学报, 1999, 19(1): 30-33. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL901.007.htmLUO Shi-gui, ZHOU Wei. Research on the identification of road accident blackspots[J]. Journal of Xi'an Highway University, 1999, 19(1): 30-33. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL901.007.htm [15] HAUER E, KONONOV J, ALLERY B, et al. Screening the road network for sites with promise[J]. Transportation Research Record, 2002(1784): 27-32.
计量
- 文章访问数: 1006
- HTML全文浏览量: 99
- PDF下载量: 1475
- 被引次数: 0