-
摘要: 在城市交通网络中, 已知路径的时间属性与费用属性, 分析了出行者对路径有、无主观偏好时的路径选择问题。当无偏好时, 利用信息熵理论和多属性综合决策方法给出了获得路径综合属性值的计算模型; 当有偏好时, 对不同的路径通过互反判断矩阵给出主观偏好, 然后利用互反判断矩阵之间的偏差建立关于属性权重向量的优化模型, 并采用解析的方法对模型进行求解, 得到每个属性的权重, 从而进一步计算出每条路径的综合属性值, 属性值最大的路径为最优路径。分析结果表明: 在无偏好时最佳选择路径2的综合属性值为0.918;在有偏好时最佳选择路径4的综合属性值为0.965, 与无偏好的相差较大, 且6条路径的选择次序不同。可见, 出行者的主观偏好对路径选择结果有较大的影响。Abstract: In urban traffic network, when the attributes of times and costs for paths were confirmed, the path selection problems with the preferences of travelers or not were analyzed.When there were no preferences, the integrated attribute value of each path was obtained by using the information entropy theory and the multi-attribute synthetic decision method.When the preferences for different paths were given by using the reciprocal judgment matrixes, for obtaining the weight of each attribute, an optimal model of weight vectors was set up to minimize the deviations between the reciprocal judgment matrixes.The model was solved by the analytic method, the attribute weights were used to calculate the integrated values of the paths, and the path with the maximum was the optimal.Analysis result shows that for the no preference problem, path 2 is the optimal with the integrated value 0.918.Otherwise, for the preference problem, path 4 is the optimal with the integrated value 0.965.Under the two conditions, the orders of six chosen paths are different.So, the preferences of travelers have obvious effect on route choice.
-
Key words:
- traffic network /
- route choice /
- optimal model /
- path preference /
- information entropy /
- reciprocal judgment matrix
-
表 1 四种互反标度
Table 1. Four kinds of reciprocal scales
1~9标度 指数标度 10/10~18/2标度 9/9~9/1标度 含义 1 a0 10/10 9/9 路径xi与路径xs同样重要 3 a2 12/8 9/7 路径xi稍微重要于路径xs 5 a4 14/6 9/5 路径xi明显重要于路径xs 7 a6 16/4 9/3 路径xi强烈重要于路径xs 9 a8 18/2 9/1 路径xi极端重要于路径xs 表 2 起讫点对(2, 24)间的路径
Table 2. Paths of origin-destination site (2, 24)
路径 路径走向 时间 费用 1 2→8→14→16→20→18→21→24 28 34 2 2→6→11→16→20→18→21→24 29 31 3 2→6→7→10→15→17→24 31 34 4 2→6→7→13→18→21→24 37 27 5 2→6→7→10→12→17→24 32 30 6 2→8→11→16→20→18→21→24 30 31 表 3 路径综合属性值
Table 3. Integrated attribute values of paths
算法 路径1 路径2 路径3 路径4 路径5 路径6 无偏好算法 0.897 0.918 0.849 0.878 0.887 0.902 有偏好算法 0.576 0.770 0.679 0.965 0.927 0.805 -
[1] LAM W H K, LI Zhi-chun, HUANG Hai-jun, et al. Modeling time-dependent travel choice problems in road networks with multiple user classes and multiple parking facilities[J]. Transportation Research Part B: Methodological, 2006, 40(5): 368-395. doi: 10.1016/j.trb.2005.05.003 [2] GAO Song, CHABINI I. Optimal routing policy problems in stochastic time-dependent networks[J]. Transportation Research Part B: Methodological, 2006, 40(2): 93-122. doi: 10.1016/j.trb.2005.02.001 [3] OPASANON S, MILLER-HOOKS E. Multicriteria adaptive paths in stochastic, time-varying networks[J]. European Journal of Operational Research, 2006, 173(1): 72-91. doi: 10.1016/j.ejor.2004.12.003 [4] CHANG T S, NOZICK L K, TURNQUIST M A. Multi-objective path finding in stochastic dynamic networks, with application to routing hazardous materials shipments[J]. Transportation Science, 2005, 39(3): 383-399. doi: 10.1287/trsc.1040.0094 [5] 李振龙. 诱导条件下驾驶员路径选择行为的演化博弈分析[J]. 交通运输系统工程与信息, 2003, 3(2): 23-27. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT200302005.htmLI Zhen-long. A study of route choice behavior of drivers based on the evolutionary game under the condition of traffic flow guidance[J]. Journal of Transportation Systems Engineering and Information Technology, 2003, 3(2): 23-27. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT200302005.htm [6] 王媛, 杨兆升, 管青, 等. 自适应路径规划系统研究[J]. 公路交通科技, 2009, 26(5): 117-122. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK200905024.htmWANG Yuan, YANG Zhao-sheng, GUAN Qing, et al. Study on adaptive route planning system[J]. Journal of Highway and Transportation Research and Development, 2009, 26(5): 117-122. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK200905024.htm [7] 于德新, 杨薇, 杨兆升. 重大灾害条件下基于GIS的最短路径改进算法[J]. 交通运输工程学报, 2011, 11(4): 123-126. http://transport.chd.edu.cn/article/id/201104019YU De-xin, YANG Wei, YANG Zhao-sheng. Shortest path improved algorithm based on GIS under large-scale disaster[J]. Journal of Traffic and Transportation Engineering, 2011, 11(4): 123-126. (in Chinese). http://transport.chd.edu.cn/article/id/201104019 [8] 陈京荣. 交通网络路径选择及应用研究[D]. 兰州: 兰州交通大学, 2009.CHEN Jing-rong. Research on route choice and its application in traffic networks[D]. Lanzhou: Lanzhou Jiaotong University, 2009. (in Chinese). [9] 陈京荣, 俞建宁, 李引珍. 随机时间依赖交通网络自适应路径选择[J]. 西南交通大学学报, 2009, 44(4): 523-529. doi: 10.3969/j.issn.0258-2724.2009.04.009CHEN Jing-rong, YU Jian-ning, LI Yin-zhen. Adaptive path selection in stochastic and time-dependent traffic networks[J]. Journal of Southwest Jiaotong University, 2009, 44(4): 523-529. (in Chinese). doi: 10.3969/j.issn.0258-2724.2009.04.009 [10] 陈京荣, 俞建宁, 李引珍. 基于蚁群算法的多属性路径选择模型[J]. 系统工程, 2009, 27(5): 30-34. https://www.cnki.com.cn/Article/CJFDTOTAL-GCXT200905007.htmCHEN Jing-rong, YU Jian-ning, LI Yin-zhen. Model of choosing routes with multi-attributes based on ant colony algorithm[J]. Systems Engineering, 2009, 27(5): 30-34. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GCXT200905007.htm [11] 张文泉, 张世英, 江立勤. 基于熵的决策评价模型及应用[J]. 系统工程学报, 1995, 10(3): 69-74. https://www.cnki.com.cn/Article/CJFDTOTAL-XTGC503.009.htmZHANG Wen-quan, ZHANG Shi-ying, JIANG Li-qin. A deci-sion assessment model based on entropy and its application[J]. Journal of Systems Engineering, 1995, 10(3): 69-74. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XTGC503.009.htm [12] 徐泽水. AHP中两类标度的关系研究[J]. 系统工程理论与实践, 1999, 19(7): 97-101. https://www.cnki.com.cn/Article/CJFDTOTAL-XTLL907.016.htmXU Ze-shui. Study on the relation between two classes of scales in AHP[J]. Systems Engineering—Theory and Prac-tice, 1999, 19(7): 97-101. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XTLL907.016.htm [13] XU Ze-shui, WEI Cui-ping. A new method for priorities in the analytic hierarchy process[J]. Operations Research Transactions, 2000, 4(3): 47-54.