留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Black and white interlaminar instability failure of asphalt overlay on old cement slab

LIU Kai WANG Fang KANG Xin

刘凯, 王芳, 康馨. 旧水泥板沥青加铺层黑白层间失稳性破坏[J]. 交通运输工程学报, 2012, 12(5): 1-12. doi: 10.19818/j.cnki.1671-1637.2012.05.001
引用本文: 刘凯, 王芳, 康馨. 旧水泥板沥青加铺层黑白层间失稳性破坏[J]. 交通运输工程学报, 2012, 12(5): 1-12. doi: 10.19818/j.cnki.1671-1637.2012.05.001
LIU Kai, WANG Fang, KANG Xin. Black and white interlaminar instability failure of asphalt overlay on old cement slab[J]. Journal of Traffic and Transportation Engineering, 2012, 12(5): 1-12. doi: 10.19818/j.cnki.1671-1637.2012.05.001
Citation: LIU Kai, WANG Fang, KANG Xin. Black and white interlaminar instability failure of asphalt overlay on old cement slab[J]. Journal of Traffic and Transportation Engineering, 2012, 12(5): 1-12. doi: 10.19818/j.cnki.1671-1637.2012.05.001

旧水泥板沥青加铺层黑白层间失稳性破坏

doi: 10.19818/j.cnki.1671-1637.2012.05.001
基金项目: 

National Natural Science Fundation of China 51108150

China Postdoctoral Science Foundation 2011M501040

China Postdoctoral Science Foundation 2012T50539

Technological Project of Hefei Key Engineering Construction Administration Bureau 2011CGAZ1153

详细信息
  • 中图分类号: U416.2

Black and white interlaminar instability failure of asphalt overlay on old cement slab

Funds: 

National Natural Science Fundation of China 51108150

China Postdoctoral Science Foundation 2011M501040

China Postdoctoral Science Foundation 2012T50539

Technological Project of Hefei Key Engineering Construction Administration Bureau 2011CGAZ1153

  • 摘要: 为分析旧水泥板沥青加铺层黑白层间水平剪切滑移和界面粘结两类失稳性破坏, 通过复合结构弹性理论计算、MATLAB编程、层间剪切和拉拔试验, 揭示了车速、路面附着系数、竖向荷载、层间接触系数、加载速率、温度、粘层油洒布量等对层间极值应力应变、剪切强度和拉拔强度的影响规律, 分别建立了层间剪切强度与正应力、剪切速率、温度以及拉拔强度与拉拔速率、温度、粘层油洒布量的函数关系。分析结果表明: 15℃时拉拔破坏界面发生概率从大到小排序为水泥板表面、粘结层、沥青膜, 45℃时为粘结层、水泥板表面、沥青膜, 层间平均粘结强度随着上述排序的递减而增大; 为减少层间失稳性破坏, 应适当提高行车速度, 控制汽车轴载, 清洁和糙化水泥板表面, 选取适宜的粘层油洒布量, 液体石油沥青为0.20~0.40 L.m-2, 乳化沥青为0.48~0.60L.m-2, 并推荐以芯样平均拉拔强度和破坏界面位置作为加铺层施工质量检验判别依据。

     

  • Figure  1.  Typical pavement structure

    Figure  2.  Interlaminar maximum horizontal shear stresses

    Figure  3.  Interlaminar maximum stresses

    Figure  4.  Interlaminar maximum strains

    Figure  5.  Pavement structure shear test and broken specimens

    Figure  6.  Relationship between shear strength and shear rate

    Figure  7.  Relationship between shear strength and test temperature

    Figure  8.  Relationship between shear strength and spraying amount of viscous oil

    Figure  9.  Relationship between cohesion and shear rate

    Figure  10.  Relationship between cohesion and test temperature

    Figure  11.  Direct pull-out test

    Figure  12.  Typical contrast of pull-out tests at 15 ℃

    Figure  13.  Typical contrast of pull-out tests at 45 ℃

    Figure  14.  Relationship between pull-out strength and pull-out rate

    Table  1.   Calculation result of f

    Pavementcondition Pavement type Vehicle speed/(km·h-1)
    10 30 60
    Dry Cement concrete 0.70-0.85 0.65-0.80 0.60-0.75
    Asphalt overlay 0.70-1.00 0.65-0.85 0.5-0.65
    Macadam pavement 0.55-0.60
    Moist Cement concrete 0.60-0.70 0.40-0.60 0.35-0.55
    Asphalt overlay 0.40-0.65 0.25-0.60 0.10-0.50
    Macadam pavement 0.35-0.40
    下载: 导出CSV

    Table  2.   Result of direct pull-out test

    Pull-out damage interface Cement slab surface damage Tack coat damage Asphalt membrane damage Epoxy damage
    Experimental temperature/℃ 15 45 15 45 15 45 15 45
    Damage number 19 9 6 13 4 6 1 2
    Damage probability/% 63.33 30.00 20.00 43.33 13.33 20.00 3.33 6.67
    Average bonding strength/MPa 0.518 0.496 0.645 0.314 0.707 0.511
    Standard deviation of bonding strength/MPa 0.082 0.059 0.116 0.048 0.149 0.091
    下载: 导出CSV

    Table  3.   Average interlaminar pull-out strengths under different spraying amounts MPa

    Asphalt type Specification 15 ℃±1.5 ℃, spraying amount/(L·m-2) 45 ℃±1.5 ℃, spraying amount/(L·m-2)
    0.2 0.4 0.6 0.2 0.4 0.6
    Medium-curing liquid petroleum asphalt (Shangdong Sunshine) AL(M)-3 0.303 0.287 0.283 0.172 0.164 0.141
    AL(M)-5 0.356 0.398 0.371 0.173 0.188 0.137
    AL(M)-6 0.387 0.378 0.369 0.169 0.194 0.146
    Quick breaking emulsified asphalt(Shell) PC-3 0.408 0.492 0.436 0.197 0.261 0.246
    PA-3 0.329 0.407 0.406 0.193 0.227 0.227
    下载: 导出CSV
  • [1] KRUNTCHEVA M R, COLLOP A C, THOM N H. Effect of bond condition of flexible pavement performance[J]. Journal of Transportation Engineering, 2005, 131(11): 880-888. doi: 10.1061/(ASCE)0733-947X(2005)131:11(880)
    [2] RAAB C, PARTL M N. Investigation into a long-term interlayer bonding of asphalt pavements[J]. Baltic Journal of Road and Bridge Engineering, 2008, 3(2): 65-70. doi: 10.3846/1822-427X.2008.3.65-70
    [3] MA Xin, GUO Zhong-yin, LI Zhi-qiang, et al. Shear destruction mechanism of asphalt pavement under moving load[J]. China Journal of Highway and Transport, 2009, 22(6): 34-39.
    [4] BAEK J, OZER H, WANG Hao, et al. Effects of interface conditions on reflective cracking development in hot-mix asphalt overlays[J]. Road Materials and Pavement Design, 2010, 11(2): 307-334. doi: 10.1080/14680629.2010.9690278
    [5] HU Xiao-di, WALUBITA L F. Effects of layer interfacial bonding conditions on the mechanistic responses in asphalt pavements[J]. Journal of Transportation Engineering, 2011, 137(1): 28-36. doi: 10.1061/(ASCE)TE.1943-5436.0000184
    [6] LIU Li. Study on the technology performance of asphalt pavement layer interfaces[D]. Xi'an: Chang'an Univerisity, 2008.
    [7] LENG Z, AL-QADI I L, CARPENTER S H, et al. Interface bonding between hot-mix asphalt and various Portland cement concrete surfaces[J]. Transportation Research Record, 2009(2127): 20-28.
    [8] XU Qin-wu, ZHOU Qing-hua, MEDINA C, et al. Experimental and numerical analysis of a waterproofing adhe-sive layer used on concrete-bridge decks[J]. International Journal of Adhesion and Adhesives, 2009, 29(5): 525-534. doi: 10.1016/j.ijadhadh.2008.12.001
    [9] ZHOU Qing-hua, XU Qin-wu. Experimental study of waterproof membranes on concrete deck: interface adhesion under influences of critical factors[J]. Materials and Design, 2009, 30(4): 1161-1168. doi: 10.1016/j.matdes.2008.06.023
    [10] WANG Shui-yin. Study on interlaminar shear strength indoor test method between asphalt concrete layers[J]. Highway, 2010(2): 144-147.
    [11] WANG Ya-ling, ZHOU Yu-li, YAO Ai-ling, et al. Test of shear and pull-off between asphalt and concrete on bridge deck pavement structure[J]. Journal of Chang'an University: Natural Science Edition, 2009, 29(6): 15-18.
    [12] WANG Xuan-cang, LIU Kai, LI Shan-qiang. Study on resistance to reflective crack of interlayer materials in asphalt overlay[J]. Journal of Building Materials, 2010, 13(2): 247-252, 271.
    [13] CHEN Ming-xing. Research on test method and evaluation indexes about interlayer bonding of asphalt pavement[D]. Xi'an: Chang'an Univerisity, 2010.
    [14] WANG Xuan-cang, WANG Chao-hui, ZHANG Yan-ping. Research and development of interlayer processing technologyof combining pavement[J]. Road Machinery and Construc-tion Mechanization, 2008, 25(2): 9-12.
    [15] COLLOP A C, SUTANTO M H, AIREY G D, et al. Development of an automatic torque test to measure the shear bond strength between asphalt[J]. Construction and Building Materials, 2011, 25(2): 623-629. doi: 10.1016/j.conbuildmat.2010.07.030
    [16] RAAB C, PARTL M N, El-HALIM O A. Evaluation of interlayer shear bond devices for asphalt pavements[J]. Baltic Journal of Road and Bridge Engineering, 2009, 4(4): 186-195. doi: 10.3846/1822-427X.2009.4.186-195
    [17] WANG Shui-yin. Influence factors of bond performance between asphalt surface layer and semi-rigid base[J]. Journal of Traffic and Transportation Engineering, 2010, 10(2): 12-19.
    [18] CHEN D H. Slippage failure of a new hot-mix asphalt overlay[J]. Journal of Performance of Constructed Facilities, 2010, 24(3): 258-264. doi: 10.1061/(ASCE)CF.1943-5509.0000089
    [19] BAEK J, Al-QADI I L. Finite element hmethod modeling of reflective cracking initiation and propagation-investigation of the effect of steel reinforcement interlayer on retarding reflect-ive cracking in hot-mix asphalt overlay[J]. Transportation Research Record, 2006(1949): 32-42.
    [20] BAEK J, Al-QADI I L. Mechanism of overlay reinforcement toretard reflective cracking under moving vehicular loading[C]∥RILEM. 6th RILEM International Conference on Cracking inPavements. Chicago: RILEM, 2008: 563-573.
    [21] COLLOP A C, THOM N H, SANGIORGI C. Assessmentof bond condition using the Leutner shear test[J]. Proceed-ings of the Institution of Civil Engineers-Transport, 2003, 156(4): 211-217.
    [22] YUAN Yu-qing. Theories of interlayer between asphalt over-lay and old Portland cement concrete pavement and technology ofatactic polypropylene modified bituminous linoleum to preventcracking[D]. Xi'an: Chang'an University, 2007.
    [23] NOVAK M, BIRGISSON B, ROQUE R. Tire contact stresses and their effects on instability rutting of asphalt mixture pavements: three-dimensional finite element analysis[J]. Transportation Research Record, 2003(1853): 150-156.
    [24] XU Qin-wu, SUN Zeng-zhi, WANG Hu, et al. Laboratorytesting material property and FE modeling structural responseof PAM-modified concrete overlay on concrete bridges[J]. Journal of Bridge Engineering, 2009, 14(1): 26-35.
  • 加载中
图(14) / 表(3)
计量
  • 文章访问数:  812
  • HTML全文浏览量:  110
  • PDF下载量:  1120
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-03-22

目录

    /

    返回文章
    返回