留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Analysis method of urban road network structure based on complex network

ZHANG Wei-hua YANG Bo CHEN Jun-jie

张卫华, 杨博, 陈俊杰. 基于复杂网络的城市路网结构分析方法[J]. 交通运输工程学报, 2012, 12(5): 64-71. doi: 10.19818/j.cnki.1671-1637.2012.05.009
引用本文: 张卫华, 杨博, 陈俊杰. 基于复杂网络的城市路网结构分析方法[J]. 交通运输工程学报, 2012, 12(5): 64-71. doi: 10.19818/j.cnki.1671-1637.2012.05.009
ZHANG Wei-hua, YANG Bo, CHEN Jun-jie. Analysis method of urban road network structure based on complex network[J]. Journal of Traffic and Transportation Engineering, 2012, 12(5): 64-71. doi: 10.19818/j.cnki.1671-1637.2012.05.009
Citation: ZHANG Wei-hua, YANG Bo, CHEN Jun-jie. Analysis method of urban road network structure based on complex network[J]. Journal of Traffic and Transportation Engineering, 2012, 12(5): 64-71. doi: 10.19818/j.cnki.1671-1637.2012.05.009

基于复杂网络的城市路网结构分析方法

doi: 10.19818/j.cnki.1671-1637.2012.05.009
基金项目: 

National Natural Science Foundation of China 51178158

Special Fund for Basic Scientific Research of Ceatral Colleges 2010HGZY0010

详细信息
  • 中图分类号: U491.13

Analysis method of urban road network structure based on complex network

Funds: 

National Natural Science Foundation of China 51178158

Special Fund for Basic Scientific Research of Ceatral Colleges 2010HGZY0010

More Information
    Author Bio:

    ZHANG Wei-hua(1967-), Male, Anqing, Anhui, Professor of Hefei University of Technology, PhD, Researchon UrbanTraffic Planning, +86-551-2901960, hfutits@163.com

  • 摘要: 在城市道路网络的基础上, 探讨了应用复杂网络理论的可行性和有效性。运用Dijkstra最短路径算法和Space L方法建立初始拓扑网络, 并建立了节点度、边度和节点路阻的特性指标模型。在反映路网功能真实性的前提下, 优化了拓扑网络, 并以某市中心城区道路交通数据为例进行实例分析。分析结果表明: 在初始网络中, 节点度数的均值为2.850 0, 标准差为0.670 8;节点路阻的平均值为84.680 0 s, 标准差为11.768 8 s;在优化网络中, 节点度数的均值为38.750 0, 标准差为24.683 0, 节点路阻的平均值为91.780 0 s, 标准差为18.862 8 s;东西向边的平均度数为42.00, 南北向边的平均度数为29.86, 内部边的平均度数为55.00, 外部边的平均度数为28.33。在优化网络中, 当度数较大的节点在路网中失稳时, 在非拥挤状态下, 最短路径路阻增大, 而在拥挤状态下, 网络会瘫痪。度数较大的节点与真实路网中交叉口重要程度相符, 能够体现交叉口重要程度的差异性。

     

  • Figure  1.  Initial topology network

    Figure  2.  Road impedances of nodes

    Figure  3.  Average lengths of edges

    Figure  4.  Degrees of nodes

    Figure  5.  Retlationship between degree and road impedance for node

    Figure  6.  Distribution of edge degrees among different nodes

    Figure  7.  Distribution of edge degrees among different nodes

    Table  1.   Minimum road impedances s

    Node 1 2 3 4 5 6 7 8 9 10
    1 0.0 22.5 65.2 93.4 41.9 60.8 76.4 110.5 139.3 83.5
    2 22.5 0.0 42.7 70.9 64.4 46.3 61.9 94.1 122.1 106.0
    3 65.2 42.7 0.0 28.2 107.1 89.0 85.5 51.4 79.4 148.7
    4 93.4 70.9 28.2 0.0 135.3 117.2 113.7 79.6 51.2 176.9
    5 41.9 64.4 107.1 135.3 0.0 18.9 34.5 68.6 97.4 51.9
    6 60.8 83.3 101.1 129.3 18.9 0.0 15.6 49.7 78.5 70.8
    7 76.4 98.9 85.5 113.7 34.5 15.6 0.0 34.1 62.9 79.1
    8 110.5 94.1 51.4 79.6 68.6 49.7 34.1 0.0 28.8 113.2
    9 139.3 122.1 79.4 51.2 97.4 78.5 62.9 28.8 0.0 142.0
    10 83.5 106.0 140.8 176.9 78.9 97.8 113.4 40.8 169.6 0.0
    下载: 导出CSV

    Table  2.   Node sequences

    Node 1 2 3 4 5 6 7 8 9 10
    1 2, 1 3, 2, 1 4, 3, 2, 1 5, 1 6, 5, 1 7, 6, 5, 1 8, 7, 6, 5, 1 9, 8, 7, 6, 5, 1 10, 1
    2 1, 2 3, 2 4, 3, 2 5, 1, 2 6, 2 7, 6, 2 8, 3, 2 9, 4, 3, 2 10, 1, 2
    3 1, 2, 3 2, 3 4, 3 5, 1, 2, 3 6, 2, 3 7, 8, 3 8, 3 9, 4, 3 10, 1, 2, 3
    4 1, 2, 3, 4 2, 3, 4 3, 4 5, 1, 2, 3, 4 6, 2, 3, 4 7, 8, 3, 4 8, 3, 4 9, 4 10, 1, 2, 3, 4
    5 1, 5 2, 5 3, 2, 1, 5 4, 3, 2, 1, 5 6, 5 7, 6, 5 8, 7, 6, 5 9, 8, 7, 6, 5 10, 11, 5
    6 1, 5, 6 2, 1, 5, 6 3, 8, 7, 6 4, 3, 8, 7, 6 5, 6 7, 6 8, 7, 6 9, 8, 7, 6 10, 11, 5, 6
    7 1, 5, 6, 7 2, 1, 5, 6, 7 3, 8, 7 4, 3, 8, 7 5, 6, 7 6, 7 8, 7 9, 8, 7 10, 11, 12, 7
    8 1, 5, 6, 7, 8 2, 3, 8 3, 8 4, 3, 8 5, 6, 7, 8 6, 7, 8 7, 8 9, 8 10, 11, 12, 7, 8
    9 1, 5, 6, 7, 8, 9 2, 3, 4, 9 3, 4, 9 4, 9 5, 6, 7, 8, 9 6, 7, 8, 9 7, 8, 9 8, 9 10, 11, 12, 7, 8, 9
    10 1, 10 2, 1, 10 3, 2, 1, 10 4, 3, 2, 1, 10 5, 11, 10 6, 5, 11, 10 7, 6, 5, 11, 10 8, 7, 12, 11, 10 9, 8, 14, 13, 12, 11, 10
    下载: 导出CSV

    Table  3.   Degrees of nodes and average impedances

    Network Degree of node Road impendance of node
    Average value Standard deviation Average value/s Standard deviation/s
    Optimal network 38.750 0 24.683 0 91.780 0 18.862 8
    Initial network 2.850 0 0.670 8 84.680 0 11.768 8
    下载: 导出CSV

    Table  4.   Degrees of edges among different nodes

  • [1] GUO Ji-fu, GAO Yong, WEN Hui-min. Assessment methodology of connect reliability based on substituted route[J]. Journal of Highway and Transportation Research and Development, 2007, 24(7): 91-94.
    [2] CHEN A, YANG Hai, LO H K, et al. Capacity reliability of a road network: an assessment methodology and numerical results[J]. Transportation Research Part B: Methodological, 2002, 36(3): 225-252. doi: 10.1016/S0191-2615(00)00048-5
    [3] CHEN A, YANG Hai, LO H K, et al. A capacity related reliability for transportation networks[J]. Journal of Advanced Transportation, 1999, 33(2): 183-200. doi: 10.1002/atr.5670330207
    [4] WATTS D J, STROGATZ S H. Collective dynamics of 'small-world' networks[J]. Nature, 1998, 393(6684): 440-442. doi: 10.1038/30918
    [5] BARABASI A L, ALBERT R. Emergence of scaling in random networks[J]. Science, 1999, 286(5439): 509-512. doi: 10.1126/science.286.5439.509
    [6] ALBERT R, BARABASI A L. Statistical mechanics of complex networks[J]. Reviews Modern Physics, 2002, 74(1): 47-97. doi: 10.1103/RevModPhys.74.47
    [7] JIANG Bing, CLARAMUNT C. A structural approach to the model generalisation of an urban street network[J]. Geoinformatical, 2004, 8(2): 157-171. doi: 10.1023/B:GEIN.0000017746.44824.70
    [8] PORTA S, CRUCITT I P, LATORA V. The network analy-sis of urban streets: a dual approach[J]. Physica A, 2006, 369(2): 853-866. doi: 10.1016/j.physa.2005.12.063
    [9] LAMMER S, GEHLSEN B, HELBIG D. Scaling laws in the spatial structure of urban road networks[J]. Physica A, 2006, 363(1): 89-95. doi: 10.1016/j.physa.2006.01.051
    [10] LATORA V, MARCHIORI M. Efficient behavior of small-world networks[J]. Physical Review Letters, 2001, 87(1): 1-4.
    [11] ANDREA D M, MARC B, ALESSANDRO C, et al. The structure of inter-urban traffic: a weighted network analysis[J]. Environment and Planning B: Planning and Design, 2007, 34(5): 905-924. doi: 10.1068/b32128
    [12] GAO Zi-you, WU Jian-jun, MAO Bao-hua, et al. Study onthe complexity of traffic networks and related problems[J]. Journal of Transportation Systems Engineering and Informa-tion Technology, 2005, 5(2): 79-83.
    [13] GAO Zi-you, LI Ke-ping, LI Xin-gang, et al. Scaling laws of the network traffic flow[J]. Physica A, 2007, 380(1): 577-584.
    [14] JIANG Bing. A topological pattern of urban street networks: universality and peculiarity[J]. Physica A, 2007, 384(2): 647-655.
    [15] MA Jia-qi, BAI Yan, HAN Bao-ming. Characteristic analysis of basic unit and complex network for urban rail transit[J]. Journal of Traffic and Transportation Engineering, 2010, 10(4): 65-70.
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  982
  • HTML全文浏览量:  68
  • PDF下载量:  1482
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-05-22

目录

    /

    返回文章
    返回