-
摘要: 以简单非均质岩质边坡的滑动为研究对象, 建立了Sarma法力学模型。根据岩质边坡块体静力平衡条件, 得出侧向正压力与临界加速度系数之间的关系, 推导了临界加速度系数公式, 得到边坡处于地震烈度条件下的安全稳定系数。分析了边坡的安全稳定系数与临界加速度系数之间的函数关系, 并利用此函数关系将传统Sarma法进行了改进。计算结果表明: 岩质边坡安全稳定系数与临界加速度系数之间呈单调递减的函数关系; 与传统Sarma法相比, 改进Sarma法无需迭代, 不存在收敛性问题, 算例分析中仅需6次计算就得到结果, 并能满足要求。Abstract: The glide of simple heterogeneous rock slope was taken as research object, a mechanical model based on Sarma method was built. According to the static equilibrium condition of rock slope block, the relationship between critical acceleration coefficient and lateral normal pressure was got. The formula of critical acceleration coefficient was deduced, and the safety stability factor of slope under the condition of seismic intensity was got. The function relationship between safety stability factor and critical acceleration coefficient was analyzed, and the traditional Sarma method was improved by using the function relationship. Calculation result shows that the function relationship between safety stability factor and critical acceleration coefficient is monotone decreasing. Compared with the traditional Sarma method, the improved Sarma method does not need iteration, and does not exist convergence problem. The calculation number of example is only 6, and the calculation result meets requirement.
-
表 1 计算结果
Table 1. Calculation result
Fi i μbi bi/m ci/kPa φi/rad c′i/kPa φ′i/rad Wi/kN Ui/kPa αi/rad ei Si Ri δi/rad Pi/kPa 1.0 1 0.038 7 3.56 34.1 28.4 48.5 0.0 967 42 46.0 6.2 151.8 175 0 42.4 2 6.26 32.8 30.8 43.0 32.1 852 41 46.4 0.6 272.6 297 65 41.3 3 4.26 38.5 32.7 46.8 18.7 591 39 42.1 0.8 195.3 221 49 39.6 4 6.25 36.8 36.6 38.6 23.0 539 44 48.4 0.9 310.2 346 42 48.3 5 5.27 37.3 38.5 36.3 25.9 863 50 49.5 0.8 265.5 302 50 46.3 6 4.37 31.2 41.6 39.7 0.0 429 41 39.4 1.0 137.7 176 0 43.7 1.1 1 0.032 0 3.56 31.0 26.1 44.1 0.0 967 42 46.0 8.9 138.0 159 0 42.4 2 6.26 29.8 28.4 39.1 29.7 852 41 46.4 0.6 247.8 270 65 41.3 3 4.26 35.0 30.2 42.6 17.1 591 39 42.1 0.8 177.5 201 49 39.6 4 6.25 33.4 34.0 35.1 21.1 539 44 48.4 1.0 282.0 315 42 48.3 5 5.27 33.9 35.9 33.0 23.8 863 50 49.5 0.7 241.3 275 50 46.3 6 4.37 28.4 38.9 36.1 0.0 429 41 39.4 1.0 125.2 160 0 43.7 1.2 1 0.024 4 3.56 28.4 24.2 40.4 0.0 967 42 46.0 14.0 126.5 146 0 42.4 2 6.26 27.3 26.4 35.8 27.6 852 41 46.4 0.6 227.2 248 65 41.3 3 4.26 32.1 28.1 39.0 15.7 591 39 42.1 0.8 162.8 184 49 39.6 4 6.25 30.6 31.8 32.2 19.4 539 44 48.4 1.0 258.5 288 42 48.3 5 5.27 31.1 33.5 30.2 22.0 863 50 49.5 0.7 221.2 252 50 46.3 6 4.37 26.0 36.5 33.1 0.0 429 41 39.4 1.0 114.7 147 0 43.7 1.3 1 0.015 1 3.56 26.2 22.6 37.3 0.0 967 42 46.0 28.0 116.7 134 0 42.4 2 6.26 25.2 24.6 33.0 25.8 852 41 46.4 0.6 209.7 229 65 41.3 3 4.26 29.6 26.3 36.0 14.6 591 39 42.1 0.8 150.2 170 49 39.6 4 6.25 28.3 29.8 29.7 18.0 539 44 48.4 1.0 238.6 266 42 48.3 5 5.27 28.7 31.5 27.9 20.5 863 50 49.5 0.6 204.2 232 50 46.3 6 4.37 24.0 34.3 30.5 0.0 429 41 39.4 1.0 105.9 136 0 43.7 1.4 1 0.002 5 3.56 24.3 21.1 34.6 0.0 967 42 46.0 226.0 108.4 125 0 42.4 2 6.26 23.4 23.0 30.7 24.2 852 41 46.4 0.6 194.7 212 65 41.3 3 4.26 27.5 24.6 33.4 13.6 591 39 42.1 0.8 139.5 158 49 39.6 4 6.25 26.3 28.0 27.6 16.8 539 44 48.4 1.1 221.6 247 42 48.3 5 5.27 26.6 29.6 25.9 19.1 863 50 49.5 0.6 189.6 216 50 46.3 6 4.37 22.3 32.4 28.3 0.0 429 41 39.4 1.0 98.3 126 0 43.7 1.5 1 -0.018 0 3.56 22.7 19.8 32.3 0.0 967 42 46.0 -44.0 101.2 116 0 42.4 2 6.26 21.8 21.6 28.6 22.7 852 41 46.4 0.6 181.7 198 65 41.3 3 4.26 25.6 23.1 31.2 12.7 591 39 42.1 0.8 130.2 147 49 39.6 4 6.25 24.5 26.4 25.8 15.8 539 44 48.4 1.1 206.8 231 42 48.3 5 5.27 24.9 27.9 24.2 17.9 863 50 49.5 0.6 177.0 201 50 46.3 6 4.37 20.8 30.6 26.5 0.0 429 41 39.4 1.0 91.8 118 0 43.7 -
[1] SARMA S K. Stability analysis of embankments and slopes[J]. Geotechnique, 1973, 23(3): 423-433. doi: 10.1680/geot.1973.23.3.423 [2] SARMA S K. Critical acceleration vs. static factor of safetyin stability analysis of earth dams and embankments[J]. Geotechnique, 1974, 24(4): 661-665. doi: 10.1680/geot.1974.24.4.661 [3] MORGENSTERN N R, PRICE V E. The analysis of stability of general slip surface[J]. Geotechnique, 1965, 15(1): 79-93. doi: 10.1680/geot.1965.15.1.79 [4] WONG F S. Slope reliability and response surface method[J]. Journal of Geotechnical Engineering, 1985, 111(1): 32-53. doi: 10.1061/(ASCE)0733-9410(1985)111:1(32) [5] 朱大勇, 范鹏贤, 郭志昆. 关于Sarma法改进算法的补充[J]. 岩土力学与工程学报, 2006, 25(11): 2343-2345. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200611029.htmZHU Da-yong, FAN Peng-xian, GUO Zhi-kun. Complementarities to modified computation procedure of Sarma method[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(11): 2343-2345. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200611029.htm [6] 王旭, 李显忠. 结合Morgenstern-Price法与Sarma法计算岩质-土质混合边坡稳定性[J]. 工程质量, 2010, 28(8): 72-75, 78. https://www.cnki.com.cn/Article/CJFDTOTAL-GCZL201008020.htmWANG Xu, LI Xian-zhong. The stability calculation of the soil-rock combined with Morgenstern-Price method and Sarma method[J]. Quality of Civil Engineering and Construction, 2010, 28(8): 72-75, 78. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GCZL201008020.htm [7] 康海贵, 李炜. 基于安全系数解析式的边坡稳定评价体系研究[J]. 中国公路学报, 2008, 21(3): 1-5. doi: 10.3321/j.issn:1001-7372.2008.03.001KANG Hai-gui, LI Wei. Research on evaluated system for slope reliability based on calculation formulae of safety factor[J]. China Journal of Highway and Transport, 2008, 21(3): 1-5. (in Chinese). doi: 10.3321/j.issn:1001-7372.2008.03.001 [8] 梧松, 郑荣跃. 改进局部安全系数法在土坡稳定性分析中的应用[J]. 岩土力学, 2004, 25(11): 1766-1769. doi: 10.3969/j.issn.1000-7598.2004.11.018WU Song, ZHENG Rong-yue. Application of variable factor of safety method to slope stability analysis[J]. Rock and Soil Mechanics, 2004, 25(11): 1766-1769. (in Chinese). doi: 10.3969/j.issn.1000-7598.2004.11.018 [9] CHEN W F. Limit Analysis and Soil Plasticity[M]. New York: Elsevier Scientific Publishing Co., 1975. [10] 姚爱军, 苏永华. 复杂岩质边坡锚固工程地震敏感性分析[J]. 土木工程学报, 2003, 36(11): 34-38. doi: 10.3321/j.issn:1000-131X.2003.11.007YAO Ai-jun, SU Yong-hua. A method for stability of slope engineering with complicated rock-mass[J]. China Civil Engineering Journal, 2003, 36(11): 34-38. (in Chinese). doi: 10.3321/j.issn:1000-131X.2003.11.007 [11] 苏永华, 赵明华, 邹志鹏, 等. 边坡稳定性分析的Sarma模式及可靠度计算方法[J]. 水利学报, 2006, 37(4): 457-463. doi: 10.3321/j.issn:0559-9350.2006.04.012SU Yong-hua, ZHAO Ming-hua, ZOU Zhi-peng, et al. Sarma model for slope stability analysis and its reliability degree calculation method[J]. Journal of Hydraulic Engineering, 2006, 37(4): 457-463. (in Chinese). doi: 10.3321/j.issn:0559-9350.2006.04.012 [12] 汪时奇. 一类提高插值算法精度的数据变换法[J]. 上海机械学院学报, 1986, 8(2): 63-68. https://www.cnki.com.cn/Article/CJFDTOTAL-HDGY198603007.htmWANG Shi-qi. A kind of data-transformation methods increasing the accuracy of interpolations[J]. Journal of Shanghai Institute of Mechanical Engineering, 1986, 8(2): 63-68. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HDGY198603007.htm