-
摘要: 考虑桥梁结构的服役期对地震荷载的影响, 应用等超越概率的方法将地震作用进行折减, 将公路桥梁抗震规范中的两级设防标准扩展为三级设防标准。考虑地震动的随机性, 应用概率理论将目标反应谱随机化, 结合相干函数和相位差谱理论, 采用MATLAB程序, 生成在役桥梁结构空间相关多点非平稳随机地震动。模拟结果表明: 应用等超越概率的方法可以将地震动峰值加速度进行合理折减; 应用概率理论进行反应谱随机抽样, 得到的随机地震反应谱能够较好地反映地震动的随机性, 其中30条随机反应谱的变异系数最大差值为0.064, 精度符合要求; 计算反应谱与随机目标反应谱拟合情况良好, 1、2号目标点的拟合优度值分别为0.82和0.81, 精度符合要求; 合成的人工地震动能够反映在役桥梁结构的已服役期和地震动的随机性, 接近实际的地震记录。Abstract: Considering the influence of bridge structure service period on earthquake loading, equal exceeding probability method was applied to reduce earthquake role, and two fortification criterions of current anti-seismic code for highway bridge were supplemented to three levels. The probability theory was used to randomize target response spectrum by considering the randomness of ground motion. Combined with coherence function and phase difference spectrum theory, the non-stationary random ground motions of spatial correlation multi-points for existing bridge structure were generated by using MATLAB programming. Simulation result indicates that ground motion peak acceleration can be reduced rationally by using equal exceeding probability method. Probability theory can be used to get random response spectrum, which can well simulate the randomness of ground motion, and the variation coefficient maximum difference value of thirty random response spectrums is 0. 064, it meets accuracy requirement. The calculating response spectrums fit well to random target response spectrums, the goodnesses of fit for points No. 1 and No. 2 are 0.82 and 0.81 respectively, they meet accuracy requirement. The artificial ground motions can reflect the service period of existing bridge structure and therandomness of ground motion, and are similar to actual earthquake records. 7 tabs, 12 figs, 23 refs.
-
表 1 公路桥梁的3个地震作用水平
Table 1. Three seismic action levels of highway bridge
表 2 公路桥梁的三级抗震设防标准
Table 2. Three levels of seismic fortification criterion of highway bridge
表 3 后续服役期的地震超越概率
Table 3. Seismic exceeding probabilities of follow-up service
表 4 后续服役期的地震峰值加速度
Table 4. Seismic peak accelerations of follow-up service
表 5 模态分析对应的特征值和自振周期
Table 5. Eigen values and natural vibration periods from modal analysis
表 6 1号点随机反应谱均值和变异系数
Table 6. Mean values and variable coefficients of random response spectrums for point No. 1
表 7 计算反应谱与随机目标反应谱的拟合优度
Table 7. Goodnesses of fit between calculating response spectrum and random target response spectrum
-
[1] JALAYER F, IERVOLINO I, MANFREDI G. Structural modeling uncertainties and their influence on seismic assessment of existing RC structures[J]. Structural Safety, 2010, 32(3): 220-228. doi: 10.1016/j.strusafe.2010.02.004 [2] BI K, HAO H, CHOUW N. Influence of ground motion spatial variation, site condition and SSI on the required separation distances of bridge structures to avoid seismic pounding[J]. Earthquake Engineering and Structural Dynamics, 2011, 40(9): 1027-1043. doi: 10.1002/eqe.1076 [3] JALAYER F, BECK J L. Effects of two alternative representations of ground-motion uncertainty on probabilistic seismic demand assessment of structures[J]. Earthquake Engin-eering and Structural Dynamics, 2008, 37(1): 61-79. doi: 10.1002/eqe.745 [4] ZANARDO G, HAO H, MODENA C. Seismic response of multi-span simply supported bridges to a spatially varying earthquake ground motion[J]. Earthquake Engineering and Structural Dynamics, 2002, 31(6): 1325-1345. doi: 10.1002/eqe.166 [5] 赵凤新, 张郁山. 人造地震动反应谱拟合的窄带时程叠加法[J]. 工程力学, 2007, 24(4): 87-91, 45. doi: 10.3969/j.issn.1000-4750.2007.04.016ZHAO Feng-xin, ZHANG Yu-shan. Narrowband-time-history's superimposing method of generating response-spectrum-compatible accelerogram[J]. Engineering Mechanics, 2007, 24(4): 87-91, 45. (in Chinese) doi: 10.3969/j.issn.1000-4750.2007.04.016 [6] 杨庆山, 姜海鹏. 基于相位差谱的时-频非平稳人造地震动的反应谱拟合[J]. 地震工程与工程振动, 2002, 22(1): 32-38. doi: 10.3969/j.issn.1000-1301.2002.01.006YANG Qing-shan, JIANG Hai-peng. Generation of response-spectrum-compatible ground motions based on phase-difference spectrum[J]. Earthquake Engineering and Engineering Vibration, 2002, 22(1): 32-38. (in Chinese) doi: 10.3969/j.issn.1000-1301.2002.01.006 [7] 田玉基, 杨庆山. 基于相位差谱的空间相关非平稳地震动场的模拟[J]. 计算力学学报, 2010, 27(5): 828-833. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG201005015.htmTIAN Yu-ji, YANG Qing-shan. Phase-difference-based simu-lation of spatial correlated and non-stationary seismic ground motions[J]. Chinese Journal of Computational Mechanics, 2010, 27(5): 828-833. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG201005015.htm [8] 徐国栋, 周锡元, 史培军. 基于功率谱的三参量人工地震动合成[J]. 建筑结构学报, 2010, 31(9): 111-118. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201009016.htmXU Guo-dong, ZHOU Xi-yuan, SHI Pei-jun. Artificial ground motion using three statistics based on power spectrum[J]. Journal of Building Structures, 2010, 31(9): 111-118. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201009016.htm [9] TSANG H H, SU R K L, LAM N T K, et al. Rapid assessment of seismic demand in existing building structures[J]. The Structural Design of Tall and Special Buildings, 2009, 18(4): 427-439. doi: 10.1002/tal.444 [10] 孙彬, 牛荻涛, 董振平. 在役结构抗震评估地震作用取值研究[J]. 西安建筑科技大学学报: 自然科学版, 2003, 35(4): 312-316. doi: 10.3969/j.issn.1006-7930.2003.04.002SUN Bin, NIU Di-tao, DONG Zhen-ping. Research on earthquake action for seismic assessment of existing structures[J]. Journal of Xi'an University of Architecture and Technology: Natural Science Edition, 2003, 35(4): 312-316. (in Chinese) doi: 10.3969/j.issn.1006-7930.2003.04.002 [11] JTG D60―2004, 公路桥涵设计通用规范[S].JTG D60―2004, general code for design of highway bridges and culverts[S]. (in Chinese) [12] JTG/T B02-01―2008, 公路桥梁抗震设计细则[S].JTG/T B02-01―2008, guidelines for seismic design of highway bridges[S]. (in Chinese) [13] GB 50011―2010, 建筑抗震设计规范[S].GB 50011―2010, code for seismic design of buildings[S]. (in Chinese) [14] 谢礼立, 张晓志, 周雍年. 论工程抗震设防标准[J]. 地震工程与工程振动, 1996, 16(1): 1-18. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC199601000.htmXIE Li-li, ZHANG Xiao-zhi, ZHOU Yong-nian. On the design earthquake level for earthquake resistant works[J]. Earthquake Engineering and Engineering Vibration, 1996, 16(1): 1-18. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC199601000.htm [15] CHOUW N, HAO H. Estimation of required seating length of bridge girders under non-uniform ground excitation and different ground conditions[J]. Journal of Applied Mechanics, 2005, 8: 709-718. doi: 10.2208/journalam.8.709 [16] 洪峰, 谢礼立. 工程结构抗震设计中小震、中震和大震的确定方法[J]. 地震工程与工程振动, 2000, 20(2): 1-6. doi: 10.3969/j.issn.1000-1301.2000.02.001HONG Feng, XIE Li-li. Method of determining minor, moderate and major earthquake in earthquake-resistant design of engineering structures[J]. Earthquake Engineering and Engin-eering Vibration, 2000, 20(2): 1-6. (in Chinese) doi: 10.3969/j.issn.1000-1301.2000.02.001 [17] 张宁. 移动车辆荷载作用下桥梁竖向随机振动分析[D]. 成都: 西南交通大学, 2010.ZHANG Ning. Stochastic vertical analysis of bridges under moving vehicle loads[D]. Chengdu: Southwest Jiaotong University, 2010. (in Chinese) [18] 刘庆林, 傅学怡, 杨先桥. 基于粘性阻尼假定的反应谱CCQC法研究[J]. 建筑科学与工程学报, 2011, 28(4): 55-62. https://www.cnki.com.cn/Article/CJFDTOTAL-XBJG201104012.htmLIU Qing-lin, FU Xue-yi, YANG Xian-qiao. Research on response spectrum CCQC method based on viscous damping assumption[J]. Journal of Architecture and Civil Engineering, 2011, 28(4): 55-62. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XBJG201104012.htm [19] CHOUW N, HAO H. Study of SSI and non-uniform ground motion effect on pounding between bridge girders[J]. Soil Dynamics and Earthquake Engineering, 2005, 25(7/8/9/10): 717-728. [20] 屈铁军, 王前信. 空间相关的多点地震动合成(1)基本公式[J]. 地震工程与工程振动, 1998, 18(1): 8-15. doi: 10.3969/j.issn.1000-1301.1998.01.002QU Tie-jun, WANG Qian-xin. Simulation of spatial correlative time histories of multi-point ground motion, part Ⅰ: fundamental formulas[J]. Earthquake Engineering and Engineering Vibration, 1998, 18(1): 8-15. (in Chinese) doi: 10.3969/j.issn.1000-1301.1998.01.002 [21] 李建波, 陈健云, 高冲. 基于相位差谱的多点激励人工波数值生成算法研究[J]. 大连理工大学学报, 2009, 49(4): 558-563. https://www.cnki.com.cn/Article/CJFDTOTAL-DLLG200904015.htmLI Jian-bo, CHEN Jian-yun, GAO Chong. Research on numerical generation algorithms of multi-support excitation artificial seismic waves based on phase difference spectrum[J]. Journal of Dalian University of Technology, 2009, 49(4): 558-563. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DLLG200904015.htm [22] BI K, HAO H, CHOUW N. Required separation distance between decks and at abutments of a bridge crossing a canyon site to avoid seismic pounding[J]. Earthquake Engineering and Structural Dynamics, 2010, 39(3): 303-323. [23] CHOUW N, HAO H. Effect of simultaneous spatial near-source ground excitation and soil on the pounding response of bridge girders[J]. Journal of Applied Mechanics, 2003, 6: 779-788.