留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

海洋拖曳系统对船舶操纵性能的影响

金良安 苑志江 迟卫 田恒斗 卢祎斌

金良安, 苑志江, 迟卫, 田恒斗, 卢祎斌. 海洋拖曳系统对船舶操纵性能的影响[J]. 交通运输工程学报, 2013, 13(1): 47-54. doi: 10.19818/j.cnki.1671-1637.2013.01.008
引用本文: 金良安, 苑志江, 迟卫, 田恒斗, 卢祎斌. 海洋拖曳系统对船舶操纵性能的影响[J]. 交通运输工程学报, 2013, 13(1): 47-54. doi: 10.19818/j.cnki.1671-1637.2013.01.008
JIN Liang-an, YUAN Zhi-jiang, CHI Wei, TIAN Heng-dou, LU Yi-bin. Influence of underwater towed system on ship maneuverability[J]. Journal of Traffic and Transportation Engineering, 2013, 13(1): 47-54. doi: 10.19818/j.cnki.1671-1637.2013.01.008
Citation: JIN Liang-an, YUAN Zhi-jiang, CHI Wei, TIAN Heng-dou, LU Yi-bin. Influence of underwater towed system on ship maneuverability[J]. Journal of Traffic and Transportation Engineering, 2013, 13(1): 47-54. doi: 10.19818/j.cnki.1671-1637.2013.01.008

海洋拖曳系统对船舶操纵性能的影响

doi: 10.19818/j.cnki.1671-1637.2013.01.008
基金项目: 

“十二五”国防预研项目 5131402031

“十二五”国防预研项目 4010403010208

详细信息
    作者简介:

    金良安(1966-), 男, 浙江黄岩人, 海军大连舰艇学院教授, 工学博士, 中国科学院博士后, 从事海洋结构物设计研究

  • 中图分类号: U661.33

Influence of underwater towed system on ship maneuverability

More Information
    Author Bio:

    JIN Liang-an(1966-), male, professor, PhD, +86-411-85855581, jinliangan@163.com

  • 摘要: 将拖曳母船、拖缆和拖曳体视为一个相互作用的整体, 利用耦合边界条件, 将拖缆顶端和底端的张力与其产生的力矩, 分别计入船舶操纵性运动方程和拖曳体六自由度运动方程, 结合拖缆的有限差分方程, 建立了船/缆/体耦合运动模型, 采用数值计算方法, 对比分析了海洋拖曳系统对船舶操纵性产生的影响。计算结果表明: 当计入拖缆和拖曳体耦合影响后, 船舶稳态运动时的速度会降低, 改变量为3%~5%;船舶回转机动时, 速度、回转半径与横摇角会降低, 改变量分别为2%~3%、2%~4%和11%~21%。采用船/缆/体耦合运动模型计算得到的船舶操纵性能符合实际, 可为预报海洋拖曳系统的运动信息提供理论依据。

     

  • 图  1  海洋拖曳系统坐标系

    Figure  1.  Coordinate systems of underwater towed system

    图  2  不同工况时缆形与张力

    Figure  2.  Configurations and tensions of towed cable

    图  3  拖曳系统轨迹

    Figure  3.  Trajectory of towed system

    图  4  船舶回转轨迹

    Figure  4.  Turning trajectory of towing ship

    图  5  船舶速度曲线

    Figure  5.  Velocity curves of towing ship

    图  6  船舶横摇角曲线

    Figure  6.  Roll angle curves of towing ship

    表  1  拖曳母船参数

    Table  1.   Parameters of towing ship

    表  2  拖缆参数

    Table  2.   Parameters of towed cable

    表  3  拖曳体参数

    Table  3.   Parameters of towed vehicle

    表  4  不同船舶工况时拖曳系统的稳态特性

    Table  4.   Steady-state characteristics of towed system under different engine conditions

    表  5  不同舵角时拖曳母船的平均回转半径

    Table  5.   Turning radii of towing ship at different rudder angles

    表  6  速度稳定值比较

    Table  6.   Comparison of steady velocities

    表  7  横摇角稳定值比较

    Table  7.   Comparison of steady roll angles

  • [1] WU Jia-ming, YE Jia-wei, YANG Cheng, et al. Experimental study on a controllable underwater towed system[J]. Ocean Engineering, 2005, 32(14/15): 1803-1817.
    [2] CHOI J K, SHIRAISHI T, TANAKA T, et al. Safe operation of an autonomous underwater towed vehicle: towed force monitoring and control[J]. Automation in Construction, 2011, 20(8): 1012-1019. doi: 10.1016/j.autcon.2011.04.002
    [3] 朱军, 庞永杰, 徐玉如. 规则波浪中舰船操纵运动计算[J]. 哈尔滨工程大学学报, 2004, 25(1): 1-5. doi: 10.3969/j.issn.1006-7043.2004.01.001

    ZHU Jun, PANG Yong-jie, XU Yu-ru. Maneuvering prediction of a ship in regualr waves[J]. Journal of Harbin Engin-eering University, 2004, 25(1): 1-5. (in Chinese) doi: 10.3969/j.issn.1006-7043.2004.01.001
    [4] 张秀凤, 尹勇, 金一丞. 规则波浪中船舶运动六自由度数学模型[J]. 交通运输工程学报, 2007, 7(3): 40-43. doi: 10.3321/j.issn:1671-1637.2007.03.009

    ZHANG Xiu-feng, YIN Yong, JIN Yi-cheng. Ship motion mathematical model with six degrees of freedom in regular wave[J]. Journal of Traffic and Transportation Engineering, 2007, 7(3): 40-43. (in Chinese) doi: 10.3321/j.issn:1671-1637.2007.03.009
    [5] BUCKHAM B, NAHON M, SETO M, at al. Dynamics and control of a towed underwater vehicle system part Ⅰ: model development[J]. Ocean Engineering, 2003, 30(4): 453-470. doi: 10.1016/S0029-8018(02)00029-X
    [6] ABLOW C M, SCHECHTER S. Numerical simulation of undersea cable dynamics[J]. Ocean Engineering, 1983, 10(6): 443-457. doi: 10.1016/0029-8018(83)90046-X
    [7] FENG Z, ALLEN R. Evaluation of the effects of the communication cable on the dynamics of an underwater flight vehicle[J]. Ocean Engineering, 2004, 31(8/9): 1019-1035.
    [8] PARK H I, JUNG D H, KOTERAYAMA W. A numerical and experimental study on dynamics of a towed low tension cable[J]. Applied Ocean Research, 2003, 25(5): 289-299. doi: 10.1016/j.apor.2004.02.003
    [9] GOBAT J I, GROSENBAUGH M A. Time-domain numerical simulation of ocean cable structures[J]. Ocean Engineering, 2006, 33(10): 1373-1400. doi: 10.1016/j.oceaneng.2005.07.012
    [10] TEIXEIRA F C, AGUIAR A P, PASCOAL A. Nonlinear adaptive control of an underwater towed vehicle[J]. Ocean Engineering, 2010, 37(13): 1193-1220. doi: 10.1016/j.oceaneng.2010.05.010
    [11] NARASIMHAN M, SINGH S N. Adaptive optimal control of an autonomous underwater vehicle in the dive plane using dorsal fins[J]. Ocean Engineering, 2006, 33(3/4): 404-416.
    [12] GROSENBAUGH M A. Tansient behavior of towed cable systems during ship turning maneuvers[J]. Ocean Engineering, 2007, 34(11/12): 1532-1542.
    [13] 朱军, 黄若波, 胡忠平. 拖曳系统对舰船操纵性影响计算[J]. 船海工程, 2002(2): 5-10. doi: 10.3963/j.issn.1671-7953.2002.02.002

    ZHU Jun, HUANG Ruo-bo, HU Zhong-ping. Influence of towed system on ship maneuverability[J]. Ship and Ocean Engineering, 2002(2): 5-10. (in Chinese) doi: 10.3963/j.issn.1671-7953.2002.02.002
    [14] 王飞, 黄国樑, 伍生春. 水下拖曳系统缆/船耦合运动模拟[J]. 上海交通大学学报, 2011, 45(4): 570-575. https://www.cnki.com.cn/Article/CJFDTOTAL-SHJT201104023.htm

    WANG Fei, HUANG Guo-liang, WU Sheng-chun. Dynamic research on the coupling response of cable-towing ship system[J]. Journal of Shanghai Jiaotong University, 2011, 45(4): 570-575. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SHJT201104023.htm
    [15] VAZ M A, PATEL M H. Three-dimensional behaviour of elastic marine cables in sheared currents[J]. Applied Ocean Research, 2000, 22(1): 45-53. doi: 10.1016/S0141-1187(99)00023-1
  • 加载中
图(6) / 表(7)
计量
  • 文章访问数:  1355
  • HTML全文浏览量:  238
  • PDF下载量:  951
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-08-15
  • 刊出日期:  2013-02-25

目录

    /

    返回文章
    返回