留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Numerical simulation of orthotropic steel deck bridges with two membrane layers systems

LI Jin-long LIU Xue-yan SCARPAS Tom TZIMIRIS George

LI Jin-long, LIU Xue-yan, SCARPAS Tom, TZIMIRIS George. Numerical simulation of orthotropic steel deck bridges with two membrane layers systems[J]. Journal of Traffic and Transportation Engineering, 2013, 13(3): 1-8. doi: 10.19818/j.cnki.1671-1637.2013.03.001
Citation: LI Jin-long, LIU Xue-yan, SCARPAS Tom, TZIMIRIS George. Numerical simulation of orthotropic steel deck bridges with two membrane layers systems[J]. Journal of Traffic and Transportation Engineering, 2013, 13(3): 1-8. doi: 10.19818/j.cnki.1671-1637.2013.03.001

doi: 10.19818/j.cnki.1671-1637.2013.03.001
详细信息
  • 中图分类号: U443.33

Numerical simulation of orthotropic steel deck bridges with two membrane layers systems

Funds: Asphalt Surfacings onOrthotropic Steel Deck Bridges, Funded by thc Dutch Transport Rescarch Centre(DVS) of theMinistry of Transport, Public Works and Watcr Management(Rws)
More Information
    Author Bio:

    LI Jir-long, Male, Doctoral Student of Delft University of Technology, Jinlong.li@tudelft.nl

  • Figure  1.  Cross section of Merwede bridge prototype

    Figure  2.  FE meshes for modelling the Merwede bridge

    Figure  3.  Dual wheel loading

    Figure  4.  Dual wheel load positions

    Figure  5.  Finite element layers of bridge surfacing system

    Figure  6.  Mesh for load placed at midway between crossbeams

    Figure  7.  Mesh for load placed on one crossbeam

    Figure  8.  Mesh for load placed on the right next to a crossbeam

    Figure  9.  Wheel loads

    Figure  10.  Distribution of stress at the bottom membrane layer in case 1

    Figure  11.  Distribution of stress at the top membrane layer in case 1

    Figure  12.  σxx, σyy, σzz at the bottom membrane in case 1

    Figure  13.  Tensile stresses at the bottom membranes (case 1, static)

    Figure  14.  Tensile stresses at the bottom membranes (case 1, dynamic)

    Figure  15.  Stresses at the bottom membranes in case 1

    Figure  16.  Strains at the bottom membranes in case 1

    Figure  17.  Distribution of stress at the bottom membrane layer in case 2

    Figure  18.  σxx, σyy, σzz at the bottom membrane layer in case 2

    Figure  19.  Tensile stresses at the bottom membranes (case 2, static)

    Figure  20.  Tensile stresses at the bottom membranes (case 2, dynamic)

    Figure  21.  Distribution of stress at the bottom membrane layer in case 3

    Figure  22.  σxx, σyy, σzz at the bottom membrane in case 3

    Figure  23.  Tensile stresses at the bottom membranes (case 3, static)

    Figure  24.  Tensile stresses at the bottom membranes (case 3, dynamic)

    Figure  25.  Mesh for simulation of moving load

    Figure  26.  Cross section of moving load location and boundary conditions

    Figure  27.  Horizontal strains in bottom membrane

    Figure  28.  Strain rates inside membrane plane

    Table  1.   Material elasticity properties

    Material Modulus/MPa Poisson ratio
    Steel 2 100 000 0.20
    Guss asphalt 7 000 0.35
    Porous asphalt 5 500 0.35
    Top membrane 100-300 0.30
    Bottom membrane 100-300 0.30
    下载: 导出CSV
  • [1] LIU X, MEDANI T O, SCARPAS A, et al. Experimental and numerical characterization of a membrane material for orthotropic steel deck bridges: part 2: development and implementation of a nonlinear constitutive model[J]. Finite Elements in Analysis and Design, 2008, 44(9/10): 580-594.
    [2] MEDANI T O. Design principles of surfacings on orthotropic steel bridge decks[D]. Delft: Delft University of Technology, 2006.
    [3] MEDANI T O, LIU X, HUURMAN M, et al. Experimental and numerical characterization of a membrane material for orthotropic steel deck bridges: part 1: experimental work and data interpretation[J]. Finite Elements in Analysis and Design, 2008, 44(9/10): 552-563.
    [4] MEDANI T O, SCARPAS A, KOLSTEIN M H, et al. Design aspects for wearing courses on orthotropic steel bridge decks[C]//International Society for Asphalt Pavements. Ninth Interna-tional Conference on Asphalt Pavement. Copenhagen: Inter-national Society for Asphalt Pavements, 2002: 1-18.
    [5] HUURMAN M, MEDANI T O, MOLENAAR A, et al. 3D-FEM for estimation of the behaviour of asphalt surfacings on orthotropic steel deck bridges[C]//TRB. 83rd TRB Annual Meeting. Washington DC: TRB, 2004: 1-24.
    [6] SCARPAS A, LIU X. CAPA-3Dfinite elements system users manual, parts Ⅰ, Ⅱ and Ⅲ[D]. Delft: Delft University of Technology, 2008.
    [7] LIU X, SCARPAS A, LI J, et al. Application of MAT device to characterize the adhesive bonding strength of membrane in orthotropic steel deck bridges[C]//ISAP. ISAP 2012, International Symposium on Heary Duty Asphalt Pavements and Bridge Deck Pavements. Nanjing: ISAP, 2012: 1-10.
  • 加载中
图(28) / 表(1)
计量
  • 文章访问数:  435
  • HTML全文浏览量:  39
  • PDF下载量:  674
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-02-03
  • 刊出日期:  2013-06-25

目录

    /

    返回文章
    返回