留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

地铁隧道橡胶浮置板轨道纵向连接理论研究

徐庆元 范浩 孟亚军 周小林 施成华

徐庆元, 范浩, 孟亚军, 周小林, 施成华. 地铁隧道橡胶浮置板轨道纵向连接理论研究[J]. 交通运输工程学报, 2013, 13(4): 37-44. doi: 10.19818/j.cnki.1671-1637.2013.04.006
引用本文: 徐庆元, 范浩, 孟亚军, 周小林, 施成华. 地铁隧道橡胶浮置板轨道纵向连接理论研究[J]. 交通运输工程学报, 2013, 13(4): 37-44. doi: 10.19818/j.cnki.1671-1637.2013.04.006
XU Qing-yuan, FAN Hao, MENG Ya-jun, ZHOU Xiao-lin, SHI Cheng-hua. Theoretical study of longitudinal connection for rubber floating slab track of subway tunnel[J]. Journal of Traffic and Transportation Engineering, 2013, 13(4): 37-44. doi: 10.19818/j.cnki.1671-1637.2013.04.006
Citation: XU Qing-yuan, FAN Hao, MENG Ya-jun, ZHOU Xiao-lin, SHI Cheng-hua. Theoretical study of longitudinal connection for rubber floating slab track of subway tunnel[J]. Journal of Traffic and Transportation Engineering, 2013, 13(4): 37-44. doi: 10.19818/j.cnki.1671-1637.2013.04.006

地铁隧道橡胶浮置板轨道纵向连接理论研究

doi: 10.19818/j.cnki.1671-1637.2013.04.006
基金项目: 

国家自然科学基金项目 51178469

中南大学研究生自主探索创新基金项目 2012zzts088

详细信息
    作者简介:

    徐庆元(1972-), 男, 湖北武汉人, 中南大学副教授, 工学博士, 从事铁路无缝线路、无砟轨道及轮轨系统动力学研究

  • 中图分类号: U213

Theoretical study of longitudinal connection for rubber floating slab track of subway tunnel

More Information
  • 摘要: 建立了地铁列车-橡胶浮置板轨道-隧道耦合动力学模型, 用MATLAB编制了相应的耦合动力仿真程序, 并用ANSYS软件对耦合动力仿真程序计算结果进行了验证。运用耦合动力仿真程序, 以地铁B型列车以80km·h-1分别运行在地铁隧道3种浮置板长度、5种橡胶刚度的橡胶浮置板线路上为例, 计算了橡胶浮置板纵向连接方式对耦合系统动力特性的影响。计算结果表明: 浮置板纵向铰接对车辆各部件动力特性、最大轮轨力、钢轨动力特性、橡胶垫动力特性、隧道动力特性影响较小, 影响在10%以内。浮置板纵向铰接后, 浮置板振动加速度有较大幅度的降低, 但浮置板最大正弯曲应力有一定幅度的增加。当浮置板较长并且橡胶减振垫刚度较低时, 浮置板纵向铰接后, 2块相邻浮置板连接处扣件最大拉力有较大幅度的降低, 降低幅度可超过80%。浮置板长度为1.25m时, 浮置板轨道不需要纵连铰接; 浮置板长度为5.00m时, 橡胶减振垫刚度小于0.01N·mm-3, 浮置板轨道需要纵连铰接; 浮置板长度为31.25m时, 橡胶减振垫刚度小于0.02N·mm-3, 浮置板轨道需要纵连铰接。

     

  • 图  1  橡胶浮置板轨道-隧道动力学模型

    Figure  1.  Dynamics model of rubber floating slab track and tunnel

    图  2  车体振动加速度时程曲线

    Figure  2.  Time-history curve of vibration acceleration of car body

    图  3  钢轨最大加速度时程曲线

    Figure  3.  Time-history curve of the maximal acceleration of rail

    图  4  浮置板最大加速度时程曲线

    Figure  4.  Time-history curve of the maximal acceleration of floating slab

    图  5  隧道最大振动加速度时程曲线

    Figure  5.  Time-history curve of the maximal vibration acceleration of tunnel

    表  1  计算结果比较

    Table  1.   Comparison of calculation results

    下载: 导出CSV

    表  2  地铁B型列车参数

    Table  2.   Parameters of B-type subway train

    下载: 导出CSV

    表  3  浮置板轨道与隧道参数

    Table  3.   Parameters of floating slab track and tunnel

    下载: 导出CSV

    表  4  计算工况

    Table  4.   Calculation conditions

    下载: 导出CSV

    表  5  工况1~10计算结果

    Table  5.   Calculation results of conditions 1-10

    下载: 导出CSV

    表  6  工况11~20计算结果

    Table  6.   Calculation results of conditions 11-20

    下载: 导出CSV

    表  7  工况21~30计算结果

    Table  7.   Calculation results of conditions 21-30

    下载: 导出CSV
  • [1] HUSSEIN M F M, HUNT H E M. A numerical model for calculating vibration due to a harmonic moving load on a floatingslab track with discontinuous slabs in an underground railway tunnel[J]. Journal of Sound and Vibration, 2009, 321 (1): 363-374.
    [2] SAURENMAN H, PHILLIPS J. In-service tests of the effectiveness of vibration control measures on the BART rail transit system[J]. Journal of Sound and Vibration, 2006, 293 (3): 888-900.
    [3] 李增光, 吴天行. 浮置板轨道二维建模及隔振性能分析[J]. 铁道学报, 2011, 33 (8): 93-98. doi: 10.3969/j.issn.1001-8360.2011.08.016

    LI Zeng-guang, WU Tian-xing. 2-D modelling of floating slab track and performance analysis on vibration isolation[J]. Journal of the China Railway Society, 2011, 33 (8): 93-98. (in Chinese). doi: 10.3969/j.issn.1001-8360.2011.08.016
    [4] 丁德云, 刘维宁, 张宝才, 等. 特殊浮置板轨道隔振效果的三维数值研究[J]. 铁道学报, 2009, 31 (6): 58-62. doi: 10.3969/j.issn.1001-8360.2009.06.010

    DING De-yun, LIU Wei-ning, ZHANG Bao-cai, et al. 3-D numerical study on vibration isolation performance of special floating slab track in lab[J]. Journal of the China Railway Society, 2009, 31 (6): 58-62. (in Chinese). doi: 10.3969/j.issn.1001-8360.2009.06.010
    [5] LOMBAERT G, DEGRANDE G, VANHAUWERE B, et al. The control of ground-borne vibrations from railway traffic by means of continuous floating slabs[J]. Journal of Sound and Vibration, 2006, 297 (3): 946-961.
    [6] KUO C M, HUANG C H, CHEN Y Y. Vibration characteristics of floating slab track[J]. Journal of Sound and Vibration, 2008, 317 (3): 1017-1034.
    [7] 刘卫丰, 刘维宁, GUPTA S, 等. 地下列车移动荷载作用下隧道及自由场的动力响应解[J]. 振动与冲击, 2008, 27 (5): 81-84. doi: 10.3969/j.issn.1000-3835.2008.05.022

    LIU Wei-feng, LIU Wei-ning, GUPTA S, et al. Dynamic response in tunnel and free field due to the moving underground trains[J]. Journal of Vibration and Shock, 2008, 27 (5): 81-84. (in Chinese). doi: 10.3969/j.issn.1000-3835.2008.05.022
    [8] 和振兴. 板式无砟轨道交通引起的环境振动研究[D]. 成都: 西南交通大学, 2008.

    HE Zhen-xing. Research of environmental vibration generated by unballasted slab track[D]. Chengdu: Southwest Jiaotong University, 2008. (in Chinese).
    [9] 徐庆元, 张旭久, 曾志平. 无砟轨道纵向连接形式对列车-板式无砟轨道-路基系统振动特性影响[J]. 中国铁道科学, 2010, 31 (1): 32-37. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201001008.htm

    XU Qing-yuan, ZHANG Xu-jiu, ZENG Zhi-ping. Influence of the longitudinal connection form of the ballastless track on the vibration characteristics of train-slab ballastless tracksubgrade system[J]. China Railway Science, 2010, 31 (1): 32-37. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201001008.htm
    [10] 徐庆元, 曹扬风, 周小林. 短波随机不平顺对列车-板式无砟轨道-路基系统振动特性的影响[J]. 中南大学学报: 自然科学版, 2011, 42 (4): 1105-1110. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201104041.htm

    XU Qing-yuan, CAO Yang-feng, ZHOU Xiao-lin. Influence of short-wave random irregularity on vibration characteristic of train-slab track-subgrade system[J]. Journal of Central South University: Science and Technology Edition, 2011, 42 (4): 1105-1110. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201104041.htm
    [11] 徐庆元. 短波随机不平顺对列车-板式无砟轨道-桥梁系统动力特性影响[J]. 土木工程学报, 2011, 44 (10): 132-137. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201110022.htm

    XU Qing-yuan. Influence of short-wave random irregularity on the dynamic characteristics of train-slab track-bridge system[J]. China Civil Engineering Journal, 2011, 44 (10): 132-137. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201110022.htm
    [12] SATO Y. Study on high-frequency vibration in track operated with high-speed trains[J]. Quarterly Reports, 1977, 18 (3): 109-114.
    [13] 徐志胜. 轨道交通轮轨噪声预测与控制的研究[D]. 成都: 西南交通大学, 2004.

    XU Zhi-sheng. Prediction and control of wheel/rail noise for rail transit[D]. Chengdu: Southwest Jiaotong University, 2004. (in Chinese).
    [14] 陈果, 翟婉明. 铁路轨道不平顺随机过程的数值模拟[J]. 西南交通大学学报, 1999, 34 (2): 138-142. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT902.002.htm

    CHEN Guo, ZHAI Wan-ming. Numerical simulation of the stochastic process of railway track irregularities[J]. Journal of Southwest Jiaotong University, 1999, 34 (2): 138-142. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT902.002.htm
    [15] 雷晓燕, 毛利军. 线路随机不平顺对车辆-轨道耦合系统动力响应分析[J]. 中国铁道科学, 2001, 22 (6): 38-43. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK200106009.htm

    LEI Xiao-yan, MAO Li-jun. Analyses of dynamic response of vehicle and track coupling system with random irregularity of rail vertical profile[J]. China Railway Science, 2001, 22 (6): 38-43. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK200106009.htm
  • 加载中
图(5) / 表(7)
计量
  • 文章访问数:  850
  • HTML全文浏览量:  183
  • PDF下载量:  750
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-01-27
  • 刊出日期:  2013-08-25

目录

    /

    返回文章
    返回