Theoretical study of longitudinal connection for rubber floating slab track of subway tunnel
-
摘要: 建立了地铁列车-橡胶浮置板轨道-隧道耦合动力学模型, 用MATLAB编制了相应的耦合动力仿真程序, 并用ANSYS软件对耦合动力仿真程序计算结果进行了验证。运用耦合动力仿真程序, 以地铁B型列车以80km·h-1分别运行在地铁隧道3种浮置板长度、5种橡胶刚度的橡胶浮置板线路上为例, 计算了橡胶浮置板纵向连接方式对耦合系统动力特性的影响。计算结果表明: 浮置板纵向铰接对车辆各部件动力特性、最大轮轨力、钢轨动力特性、橡胶垫动力特性、隧道动力特性影响较小, 影响在10%以内。浮置板纵向铰接后, 浮置板振动加速度有较大幅度的降低, 但浮置板最大正弯曲应力有一定幅度的增加。当浮置板较长并且橡胶减振垫刚度较低时, 浮置板纵向铰接后, 2块相邻浮置板连接处扣件最大拉力有较大幅度的降低, 降低幅度可超过80%。浮置板长度为1.25m时, 浮置板轨道不需要纵连铰接; 浮置板长度为5.00m时, 橡胶减振垫刚度小于0.01N·mm-3, 浮置板轨道需要纵连铰接; 浮置板长度为31.25m时, 橡胶减振垫刚度小于0.02N·mm-3, 浮置板轨道需要纵连铰接。Abstract: A coupling dynamics model of subway train, rubber floating slab track and tunnel was established, its corresponding program for coupling dynamic simulation was developed by MATLAB software, and the calculation result of coupling dynamic simulation program was verified by ANSYS software.With the developed coupling dynamic simulation program, a B-type subway train with a speed of 80km·h-1 was taken as an example, when it past through rubber floating slab track on tunnel with 3 kinds of floating slab lengths and 5 kinds of rubber stiffnesses, the influence of longitudinal connection form of rubber floating slab on the dynamic characteristics of coupling system was calculated.Calculation result shows that longitudinally articulated floating slab has little influence on the dynamic characteristics of each vehicle component, the maximum wheel-rail force, the dynamic characteristics of rail, the dynamic characteristics of rubber mat, and the dynamic characteristics of tunnel, and the influence is less than 10%.When floating slab is longitudinally articulated, the vibration acceleration of floating slab decreases significantly, but the maximum positive bending stress of floating slab increases to a certain extent.When the length of floating slab is longer and the stiffness of vibration-reduced rubber mat is lower, after the floating slab is longitudinally articulated, the maximum fastener tensile force near the joint of two neighboring floating slabs decreases significantly, and the decrease amplitude may exceed 80%.When the length of floating slab is 1.25 m, it is not necessary for the floating slab track to be longitudinally articulated, but when the length of floating slab is 5.00mand the stiffness of vibration-reduced rubber mat is less than 0.01N·mm-3, the floating slab track should be longitudinally articulated.When the length of floating slab is 31.25m, the floating slab track should be longitudinally articulated if the stiffness of vibration-reduced rubber mat is less than 0.02N·mm-3.
-
Key words:
- subway /
- floating slab track /
- tunnel /
- coupling dynamics /
- longitudinal connection
-
表 1 计算结果比较
Table 1. Comparison of calculation results
表 2 地铁B型列车参数
Table 2. Parameters of B-type subway train
表 3 浮置板轨道与隧道参数
Table 3. Parameters of floating slab track and tunnel
表 4 计算工况
Table 4. Calculation conditions
表 5 工况1~10计算结果
Table 5. Calculation results of conditions 1-10
表 6 工况11~20计算结果
Table 6. Calculation results of conditions 11-20
表 7 工况21~30计算结果
Table 7. Calculation results of conditions 21-30
-
[1] HUSSEIN M F M, HUNT H E M. A numerical model for calculating vibration due to a harmonic moving load on a floatingslab track with discontinuous slabs in an underground railway tunnel[J]. Journal of Sound and Vibration, 2009, 321 (1): 363-374. [2] SAURENMAN H, PHILLIPS J. In-service tests of the effectiveness of vibration control measures on the BART rail transit system[J]. Journal of Sound and Vibration, 2006, 293 (3): 888-900. [3] 李增光, 吴天行. 浮置板轨道二维建模及隔振性能分析[J]. 铁道学报, 2011, 33 (8): 93-98. doi: 10.3969/j.issn.1001-8360.2011.08.016LI Zeng-guang, WU Tian-xing. 2-D modelling of floating slab track and performance analysis on vibration isolation[J]. Journal of the China Railway Society, 2011, 33 (8): 93-98. (in Chinese). doi: 10.3969/j.issn.1001-8360.2011.08.016 [4] 丁德云, 刘维宁, 张宝才, 等. 特殊浮置板轨道隔振效果的三维数值研究[J]. 铁道学报, 2009, 31 (6): 58-62. doi: 10.3969/j.issn.1001-8360.2009.06.010DING De-yun, LIU Wei-ning, ZHANG Bao-cai, et al. 3-D numerical study on vibration isolation performance of special floating slab track in lab[J]. Journal of the China Railway Society, 2009, 31 (6): 58-62. (in Chinese). doi: 10.3969/j.issn.1001-8360.2009.06.010 [5] LOMBAERT G, DEGRANDE G, VANHAUWERE B, et al. The control of ground-borne vibrations from railway traffic by means of continuous floating slabs[J]. Journal of Sound and Vibration, 2006, 297 (3): 946-961. [6] KUO C M, HUANG C H, CHEN Y Y. Vibration characteristics of floating slab track[J]. Journal of Sound and Vibration, 2008, 317 (3): 1017-1034. [7] 刘卫丰, 刘维宁, GUPTA S, 等. 地下列车移动荷载作用下隧道及自由场的动力响应解[J]. 振动与冲击, 2008, 27 (5): 81-84. doi: 10.3969/j.issn.1000-3835.2008.05.022LIU Wei-feng, LIU Wei-ning, GUPTA S, et al. Dynamic response in tunnel and free field due to the moving underground trains[J]. Journal of Vibration and Shock, 2008, 27 (5): 81-84. (in Chinese). doi: 10.3969/j.issn.1000-3835.2008.05.022 [8] 和振兴. 板式无砟轨道交通引起的环境振动研究[D]. 成都: 西南交通大学, 2008.HE Zhen-xing. Research of environmental vibration generated by unballasted slab track[D]. Chengdu: Southwest Jiaotong University, 2008. (in Chinese). [9] 徐庆元, 张旭久, 曾志平. 无砟轨道纵向连接形式对列车-板式无砟轨道-路基系统振动特性影响[J]. 中国铁道科学, 2010, 31 (1): 32-37. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201001008.htmXU Qing-yuan, ZHANG Xu-jiu, ZENG Zhi-ping. Influence of the longitudinal connection form of the ballastless track on the vibration characteristics of train-slab ballastless tracksubgrade system[J]. China Railway Science, 2010, 31 (1): 32-37. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201001008.htm [10] 徐庆元, 曹扬风, 周小林. 短波随机不平顺对列车-板式无砟轨道-路基系统振动特性的影响[J]. 中南大学学报: 自然科学版, 2011, 42 (4): 1105-1110. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201104041.htmXU Qing-yuan, CAO Yang-feng, ZHOU Xiao-lin. Influence of short-wave random irregularity on vibration characteristic of train-slab track-subgrade system[J]. Journal of Central South University: Science and Technology Edition, 2011, 42 (4): 1105-1110. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201104041.htm [11] 徐庆元. 短波随机不平顺对列车-板式无砟轨道-桥梁系统动力特性影响[J]. 土木工程学报, 2011, 44 (10): 132-137. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201110022.htmXU Qing-yuan. Influence of short-wave random irregularity on the dynamic characteristics of train-slab track-bridge system[J]. China Civil Engineering Journal, 2011, 44 (10): 132-137. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201110022.htm [12] SATO Y. Study on high-frequency vibration in track operated with high-speed trains[J]. Quarterly Reports, 1977, 18 (3): 109-114. [13] 徐志胜. 轨道交通轮轨噪声预测与控制的研究[D]. 成都: 西南交通大学, 2004.XU Zhi-sheng. Prediction and control of wheel/rail noise for rail transit[D]. Chengdu: Southwest Jiaotong University, 2004. (in Chinese). [14] 陈果, 翟婉明. 铁路轨道不平顺随机过程的数值模拟[J]. 西南交通大学学报, 1999, 34 (2): 138-142. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT902.002.htmCHEN Guo, ZHAI Wan-ming. Numerical simulation of the stochastic process of railway track irregularities[J]. Journal of Southwest Jiaotong University, 1999, 34 (2): 138-142. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT902.002.htm [15] 雷晓燕, 毛利军. 线路随机不平顺对车辆-轨道耦合系统动力响应分析[J]. 中国铁道科学, 2001, 22 (6): 38-43. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK200106009.htmLEI Xiao-yan, MAO Li-jun. Analyses of dynamic response of vehicle and track coupling system with random irregularity of rail vertical profile[J]. China Railway Science, 2001, 22 (6): 38-43. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK200106009.htm