留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

摩擦面波状磨耗的分形描述方法

陈光雄 胡文萍 王平 朱旻昊

陈光雄, 胡文萍, 王平, 朱旻昊. 摩擦面波状磨耗的分形描述方法[J]. 交通运输工程学报, 2015, 15(1): 25-33. doi: 10.19818/j.cnki.1671-1637.2015.01.004
引用本文: 陈光雄, 胡文萍, 王平, 朱旻昊. 摩擦面波状磨耗的分形描述方法[J]. 交通运输工程学报, 2015, 15(1): 25-33. doi: 10.19818/j.cnki.1671-1637.2015.01.004
CHEN Guang-xiong, HU Wen-ping, WANG Ping, ZHU Min-hao. Fractal description method of corrugation for friction surface[J]. Journal of Traffic and Transportation Engineering, 2015, 15(1): 25-33. doi: 10.19818/j.cnki.1671-1637.2015.01.004
Citation: CHEN Guang-xiong, HU Wen-ping, WANG Ping, ZHU Min-hao. Fractal description method of corrugation for friction surface[J]. Journal of Traffic and Transportation Engineering, 2015, 15(1): 25-33. doi: 10.19818/j.cnki.1671-1637.2015.01.004

摩擦面波状磨耗的分形描述方法

doi: 10.19818/j.cnki.1671-1637.2015.01.004
基金项目: 

国家自然科学基金项目 51275429

四川省科技计划项目 2010GZ0227

教育部长江学者和创新团队发展计划项目 IRT1178

中央高校基本科研业务费专项资金项目 SWJTU12ZT01

详细信息
    作者简介:

    陈光雄(1962-), 男, 广西容县人, 西南交通大学教授, 工学博士, 从事车辆系统动力学研究

  • 中图分类号: U213.42

Fractal description method of corrugation for friction surface

More Information
    Author Bio:

    CHEN Guang-xiong (1962-), male, professor, PhD, +86-28-87603724, chen_guangx@163.com

  • 摘要: 在自行搭建的销-盘试验机上进行自激励振动条件下的滑动摩擦试验, 通过销-盘的摩擦运动来模拟轮轨间的平均接触应力。利用激光位移传感器测量盘试件摩擦面的波状磨耗尺寸, 得到了不同试验条件下盘试件摩擦面的波状磨耗曲线。运用功率谱法对摩擦面的波状磨耗进行分形描述, 根据功率谱指数与分形维数的关系计算不同试验条件下波状磨耗的分形维数, 分析了分形维数与转速、法向载荷、转数等参数的关系。试验结果表明: 在相同法向载荷下, 利用功率谱法求得的分形维数随转速的增加而增大; 在相同转速下, 分形维数随法向载荷的增加而增大; 在相同转速和法向载荷下, 分形维数随转数的增加而减小; 盘试件摩擦面波状磨耗的分形维数为1.79~1.92, 分形特征显著, 分形维数越大, 盘试件摩擦面波状磨耗越严重, 波状磨耗波长越长。利用功率谱法求得的结果与试验结果一致, 可用分形维数定量描述摩擦面的波状磨耗。

     

  • 图  1  计算流程

    Figure  1.  Calculation flow

    图  2  试验装置

    Figure  2.  Test equipment

    图  3  试验机

    Figure  3.  Test machine

    图  4  转速为60r·min-1时的波状磨耗深度

    Figure  4.  Corrugation depth when r is 60r·min-1

    图  5  转速为90r·min-1时的波状磨耗深度

    Figure  5.  Corrugation depth when r is 90r·min-1

    图  6  转速为120r·min-1时的波状磨耗深度

    Figure  6.  Corrugation depth when r is 120r·min-1

    图  7  法向载荷为50N时的波状磨耗深度

    Figure  7.  Corrugation depth when F is 50N

    图  8  法向载荷为100N时的波状磨耗深度

    Figure  8.  Corrugation depth when F is 100N

    图  9  法向载荷为150N时的波状磨耗深度

    Figure  9.  Corrugation depth when F is 150N

    图  10  法向载荷为200N时的波状磨耗深度

    Figure  10.  Corrugation depth when F is 200N

    图  11  转数为28 800时的波状磨耗深度

    Figure  11.  Corrugation depth when R is 28 800

    图  12  转数为46 800时的波状磨耗深度

    Figure  12.  Corrugation depth when R is 46 800

    图  13  转数为64 800时的波状磨耗深度

    Figure  13.  Corrugation depth when R is 64 800

    图  14  转速为60r·min-1时的lg[S(d)]

    Figure  14.  lg[S(d)]when r is 60r·min-1

    图  15  转速为90r·min-1时的lg[S(d)]

    Figure  15.  lg[S(d)]when r is 90r·min-1

    图  16  转速为120r·min-1时的lg[S(d)]

    Figure  16.  lg[S(d)]when r is 120r·min-1

    图  17  法向载荷为50N时的lg[S(d)]

    Figure  17.  lg[S(d)]when F is 50N

    图  18  法向载荷为100N时的lg[S(d)]

    Figure  18.  lg[S(d)]when F is 100N

    图  19  法向载荷为150N时的lg[S(d)]

    Figure  19.  lg[S(d)]when F is 150N

    图  20  法向载荷为200N时的lg[S(d)]

    Figure  20.  lg[S(d)]when F is 200N

    图  21  转数为28 800时的lg[S(d)]

    Figure  21.  lg[S(d)]when R is 28 800

    图  22  转数为46 800时的lg[S(d)]

    Figure  22.  lg[S(d)]when R is 46 800

    图  23  转数为64 800时的lg[S(d)]

    Figure  23.  lg[S(d)]when R is 64 800

    图  24  分形维数与转速的关系

    Figure  24.  Relation between D and r

    图  25  分形维数与法向载荷的关系

    Figure  25.  Relation between D and F

    图  26  分形维数与转数的关系

    Figure  26.  Relation between D and R

    表  1  试验参数

    Table  1.   Experimental parameters

  • [1] 闫子权, 谷爱军, 黑勇进, 等. 轮对振动对产生钢轨异常波磨的影响[J]. 都市快轨交通, 2011, 24(3): 22-25, 29. doi: 10.3969/j.issn.1672-6073.2011.03.007

    YAN Zi-quan, GU Ai-jun, HEI Yong-jin, et al. Influences of wheel set vibration on rail abnormal corrugation[J]. Urban Rapid Rail Transit, 2011, 24(3): 22-25, 29. (in Chinese) doi: 10.3969/j.issn.1672-6073.2011.03.007
    [2] SATO Y, MATSUMOTO A, KNOTHE K. Review on rail corrugation studies[J]. Wear, 2002, 253(1): 130-139. https://www.sciencedirect.com/science/article/pii/S0043164802000923
    [3] CORREA N, OYARZABAL O, VADILLO E G, et al. Rail corrugation development in high speed lines[J]. Wear, 2011, 271(1): 2438-2447. https://www.sciencedirect.com/science/article/pii/S0043164811001414
    [4] 温泽峰. 钢轨波浪形磨损研究[D]. 成都: 西南交通大学, 2006.

    WEN Ze-feng. Study on rail corrugation[D]. Chengdu: Southwest Jiaotong University, 2006. (in Chinese)
    [5] GRASSIE S L. Rail corrugation: advances in measurement, understanding and treatment[J]. Wear, 2005, 258(7): 1224-1234. https://www.sciencedirect.com/science/article/pii/S004316480400290X
    [6] KNOTHE K, GROß-THEBING A. Short wavelength rail corrugation and non-steady-state contact mechanics[J]. Vehicle System Dynamics, 2008, 46(1/2): 49-66. https://trid.trb.org/view.aspx?id=850744
    [7] SAULOT A, DESCARTES S, BERTHIER Y. Sharp curved track corrugation: from corrugation observed on-site, to corrugation reproduced on simulators[J]. Tribology International, 2009, 42(11): 1691-1705. https://www.sciencedirect.com/science/article/pii/S0301679X0900108X
    [8] 王国新, 陈光雄, 邬平波. 轨枕支撑刚度和阻尼对小半径曲线钢轨磨耗型波磨影响的有限元研究[J]. 振动与冲击, 2011, 30(2): 99-103. doi: 10.3969/j.issn.1000-3835.2011.02.019

    WANG Guo-xin, CHEN Guang-xiong, WU Ping-bo. Influence of sleeper support stiffness and damping on wear-type rail corrugation on a tight curve[J]. Journal of Vibration and Shock, 2011, 30(2): 99-103. (in Chinese) doi: 10.3969/j.issn.1000-3835.2011.02.019
    [9] WANG Kai-yun, HUANG Chao, ZHAI Wan-ming, et al. Progress on wheel-rail dynamic performance of railway curve negotiation[J]. Journal of Traffic and Transportation Engineering: English Edition, 2014, 1(3): 209-220. doi: 10.1016/S2095-7564(15)30104-5
    [10] 张波, 刘启跃. 钢轨波浪形磨损的研究分析[J]. 西南交通大学学报, 2001, 36(5): 500-504. doi: 10.3969/j.issn.0258-2724.2001.05.012

    ZHANG Bo, LIU Qi-yue. Research review on rail corrugation[J]. Journal of Southwest Jiaotong University, 2001, 36(5): 500-504. (in Chinese) doi: 10.3969/j.issn.0258-2724.2001.05.012
    [11] ZAREMBSKI A M. Types of rail corrugations[J]. Railway Track and Structures, 1989, 85(8): 13-15. https://jglobal.jst.go.jp/en/detail?JGLOBAL_ID=200902029558436719
    [12] GRASSIE S L. Rail corrugation: characteristics, causes, and treatments[J]. Journal of Rail and Rapid Transit, 2009, 223(6): 581-596. doi: 10.1243/09544097JRRT264
    [13] 刘维宁, 任静, 刘卫丰, 等. 北京地铁钢轨波磨测试分析[J]. 都市快轨交通, 2011, 24(3): 6-9. doi: 10.3969/j.issn.1672-6073.2011.03.003

    LIU Wei-ning, REN Jing, LIU Wei-feng, et al. In-situ tests and analysis on rail corrugation of Beijing Metro[J]. Urban Rapid Rail Transit, 2011, 24(3): 6-9. (in Chinese) doi: 10.3969/j.issn.1672-6073.2011.03.003
    [14] CHEN Guang-xiong, ZHOU Zhong-rong, OUYANG Hua-jiang, et al. A finite element study on rail corrugation based on saturated creep force-induced self-excited vibration of a wheelset-track system[J]. Journal of Sound and Vibration, 2010, 329(22): 4643-4655. doi: 10.1016/j.jsv.2010.05.011
    [15] 吴兆宏, 朱华, 李刚. 摩擦信号分形维数与载荷和速度的关系研究[J]. 摩擦学学报, 2007, 27(2): 161-165. doi: 10.3321/j.issn:1004-0595.2007.02.014

    WU Zhao-hong, ZHU Hua, LI Gang. Research on the relation of fractal dimension of friction coefficient to load and velocity[J]. Tribology, 2007, 27(2): 161-165. (in Chinese) doi: 10.3321/j.issn:1004-0595.2007.02.014
    [16] 葛世荣. 粗糙表面的分形特征与分形表达研究[J]. 摩擦学学报, 1997, 17(1): 73-80. doi: 10.3321/j.issn:1004-0595.1997.01.011

    GE Shi-rong. The fractal behavior and fractal characterization of rough surface[J]. Tribology, 1997, 17(1): 73-80. (in Chinese) doi: 10.3321/j.issn:1004-0595.1997.01.011
    [17] 朱华, 葛世荣. 结构函数与均方根分形表征效果的比较[J]. 中国矿业大学学报, 2004, 33(4): 396-399. doi: 10.3321/j.issn:1000-1964.2004.04.008

    ZHU Hua, GE Shi-rong. Comparison of fractal characterization effects of structure function and mean square root[J]. Journal of China University of Mining and Technology, 2004, 33(4): 396-399. (in Chinese) doi: 10.3321/j.issn:1000-1964.2004.04.008
    [18] 朱华, 葛世荣. 摩擦力和摩擦振动的分形行为研究[J]. 摩擦学学报, 2004, 24(5): 433-437. doi: 10.3321/j.issn:1004-0595.2004.05.011

    ZHU Hua, GE Shi-rong. Study on the fractal behaviors of frictional forces and vibrations[J]. Tribology, 2004, 24(5): 433-437. (in Chinese) doi: 10.3321/j.issn:1004-0595.2004.05.011
    [19] 蒋书文, 姜斌, 李燕, 等. 磨损表面形貌的三维分形维数计算[J]. 摩擦学学报, 2003, 23(6): 533-536. doi: 10.3321/j.issn:1004-0595.2003.06.017

    JIANG Shu-wen, JIANG Bin, LI Yan, et al. Calculation of fractal dimension of worn surface[J]. Tribology, 2003, 23(6): 533-536. (in Chinese) doi: 10.3321/j.issn:1004-0595.2003.06.017
    [20] 李刚, 朱华, 吕亮. 两种测度方法表征粗糙表面的效果研究[J]. 润滑与密封, 2006(7): 48-50. https://www.cnki.com.cn/Article/CJFDTOTAL-RHMF200607016.htm

    LI Gang, ZHU Hua, LU Liang. Study on the differences of characterizing rough surfaces with two fractal dimension methods[J]. Lubrication Engineering, 2006(7): 48-50. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-RHMF200607016.htm
    [21] OTHMANI A, KAMINSKY C. Three dimensional fractal analysis of sheet metal surfaces[J]. Wear, 1998, 214(2): 147-150. doi: 10.1016/S0043-1648(97)00266-4
    [22] 伍曾, 刘学毅, 姚令侃. 钢轨波磨的分形描述及动力仿真分析[J]. 西南交通大学学报, 2009, 44(5): 721-725. doi: 10.3969/j.issn.0258-2724.2009.05.017

    WU Zeng, LIU Xue-yi, YAO Ling-kan. Fractal description of rail corrugation and its dynamic simulation[J]. Journal of Southwest Jiaotong University, 2009, 44(5): 721-725. (in Chinese) doi: 10.3969/j.issn.0258-2724.2009.05.017
    [23] MANDELBROT B B, PASSOJA D E, PAULLAY A J. Fractal character of fracture surfaces of metals[J]. Nature, 1984, 308(5961): 721-722. doi: 10.1038/308721a0
    [24] YUAN C Q, LI J, YAN X P, et al. The use of the fractal description to characterize engineering surfaces and wear particles[J]. Wear, 2003, 255(1): 315-326. https://www.sciencedirect.com/science/article/pii/S0043164803002060
    [25] MAJUMDAR A, TIEN C L. Fractal characterization and simulation of rough surfaces[J]. Wear, 1990, 136(2): 313-327. doi: 10.1016/0043-1648(90)90154-3
    [26] GAGNEPAIN J J, RQUES-CARMES C. Fractal approach to two-dimensional and three-dimensional surface roughness[J]. Wear, 1986, 109(1): 119-126. https://www.sciencedirect.com/science/article/pii/0043164886902577
    [27] 陈辉, 胡元中, 王慧, 等. 粗糙表面分形特征的模拟及其表征[J]. 机械工程学报, 2006, 42(9): 219-223. doi: 10.3321/j.issn:0577-6686.2006.09.039

    CHEN Hui, HU Yuan-zhong, WANG Hui, et al. Simulation and characterization of fractal rough surfaces[J]. Chinese Journal of Mechanical Engineering, 2006, 42(9): 219-223. (in Chinese) doi: 10.3321/j.issn:0577-6686.2006.09.039
    [28] 袁群, 韩菊红, 于跃海. 混凝土粘结面粗糙度评价的功率谱法分维[J]. 工业建筑, 2001, 31(2): 4-5, 23. doi: 10.3321/j.issn:1000-8993.2001.02.002

    YUAN Qun, HAN Ju-hong, YU Yue-hai. Fractional dimension of power spectrum method for evaluating surface roughness of bonding concrete[J]. Industrial Construction, 2001, 31(2): 4-5, 23. (in Chinese) doi: 10.3321/j.issn:1000-8993.2001.02.002
    [29] 杜文杰. 波磨的分形性分析及其应用[D]. 北京: 北京交通大学, 2012.

    DU Wen-jie. Fractal analysis and application of rail corrugations[D]. Beijing: Beijing Jiaotong University, 2012. (in Chinese)
    [30] SHEN Gang, ZHONG Xiao-bo. Implementations of newly developed wheel and rail profile design methods[J]. Journal of Traffic and Transportation Engineering: English Edition, 2014, 1(3): 221-227. doi: 10.1016/S2095-7564(15)30105-7
    [31] 余萍, 胡孝平. MATLAB在振动台试验数据处理中的应用[J]. 水利与建筑工程学报, 2008, 6(1): 121-122. doi: 10.3969/j.issn.1672-1144.2008.01.039

    YU Ping, HU Xiao-ping. Application of MATLAB software in data processing for vibrating table test[J]. Journal of Water Resources and Architectural Engineering, 2008, 6(1): 121-122. (in Chinese) doi: 10.3969/j.issn.1672-1144.2008.01.039
  • 加载中
图(26) / 表(1)
计量
  • 文章访问数:  819
  • HTML全文浏览量:  76
  • PDF下载量:  726
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-10-08
  • 刊出日期:  2015-02-25

目录

    /

    返回文章
    返回