留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

地铁钢轨波磨对车辆和轨道动态行为的影响

李伟 曾全君 朱士友 樊嘉峰 金学松

李伟, 曾全君, 朱士友, 樊嘉峰, 金学松. 地铁钢轨波磨对车辆和轨道动态行为的影响[J]. 交通运输工程学报, 2015, 15(1): 34-42. doi: 10.19818/j.cnki.1671-1637.2015.01.005
引用本文: 李伟, 曾全君, 朱士友, 樊嘉峰, 金学松. 地铁钢轨波磨对车辆和轨道动态行为的影响[J]. 交通运输工程学报, 2015, 15(1): 34-42. doi: 10.19818/j.cnki.1671-1637.2015.01.005
LI Wei, CENG Quan-jun, ZHU Shi-you, FAN Jia-feng, JIN Xue-song. Effect of metro rail corrugation on dynamic behaviors of vehicle and track[J]. Journal of Traffic and Transportation Engineering, 2015, 15(1): 34-42. doi: 10.19818/j.cnki.1671-1637.2015.01.005
Citation: LI Wei, CENG Quan-jun, ZHU Shi-you, FAN Jia-feng, JIN Xue-song. Effect of metro rail corrugation on dynamic behaviors of vehicle and track[J]. Journal of Traffic and Transportation Engineering, 2015, 15(1): 34-42. doi: 10.19818/j.cnki.1671-1637.2015.01.005

地铁钢轨波磨对车辆和轨道动态行为的影响

doi: 10.19818/j.cnki.1671-1637.2015.01.005
基金项目: 

国家自然科学基金项目 51105318

高等学校博士学科点专项科研基金项目 20130184110005

四川省科技计划项目 2011GZ0090

详细信息
    作者简介:

    李伟(1985-), 男, 湖北监利人, 西南交通大学工学博士研究生, 从事轮轨系统振动和滚动接触疲劳研究

    金学松(1956-), 男, 江苏扬州人, 西南交通大学教授, 工学博士

  • 中图分类号: U213.42

Effect of metro rail corrugation on dynamic behaviors of vehicle and track

More Information
    Author Bio:

    LI Wei (1985-), male, doctoral student, +86-28-87628250, 1022liwei@163.com

    JIN Xue-song (1956-), male, professor, PhD, +86-28-87634355, xsjin@swjtu.cn

  • 摘要: 采用钢轨波磨测量仪测量了钢轨波磨特征, 采用加速度和位移传感器测量了钢轨打磨前后车辆和轨道零部件的振动加速度, 分析了钢轨波磨对车辆和轨道零部件振动的影响, 建立了车辆-轨道耦合动力学模型, 研究了钢轨波磨对轮轨相互作用力的影响, 确定了钢轨打磨限值。研究结果表明: 钢轨波磨主波长为30~40 mm, 次波长为16 mm; 钢轨轨头和弹条在650~800 Hz的振动和轴箱在670~800 Hz的振动与30~40 mm波长对应的车辆通过振动行为一致, 因此, 短波钢轨波磨导致地铁车辆和轨道零部件振动过大, 是车辆一系钢弹簧和轨道扣件弹条疲劳断裂的主要原因; 钢轨打磨可以有效解决疲劳断裂问题, 打磨前钢轨轨头、弹条、轨枕和道床振动加速度均方根分别为243.4、309.3、17.1、2.6 m·s-2, 打磨后振动加速度均方根下降为51.5、8.8、1.5、0.5 m·s-2; 轮轨垂向力和横向力均对钢轨波磨波长非常敏感, 当钢轨波磨波深为0.1 mm时, 35、80 mm波长对应的轮轨垂向力分别为307、109 kN, 横向力分别为56、25 kN; 当车辆运营速度为90~120 km·h-1时, 根据轮重减载率限值标准, 35 mm波长钢轨波磨波深为0.05~0.08 mm, 根据轮轨垂向力限值标准, 35 mm波长钢轨波磨波深为0.03~0.06 mm, 建议30~40 mm短波钢轨波磨波深达到0.05 mm时进行打磨处理。

     

  • 图  1  车辆和轨道零部件破坏现象

    Figure  1.  Fracture phenomena of vehicle and track components

    图  2  GJ-III和DTVI扣件

    Figure  2.  GJ-III and DTVI fasteners

    图  3  钢轨不平顺均方根

    Figure  3.  RMSs of rail irregularities

    图  4  钢轨打磨前的不平顺状态

    Figure  4.  Irregularities before rail grinding

    图  5  钢轨打磨后的不平顺状态

    Figure  5.  Irregularities after rail grinding

    图  6  轨道零部件传感器位置

    Figure  6.  Sensor locations of track components

    图  7  车辆零部件传感器位置

    Figure  7.  Sensor locations of vehicle components

    图  8  钢轨轨头和弹条的垂向加速度

    Figure  8.  Vertical accelerations of railhead and fastener clip

    图  9  钢轨轨头和弹条的振动频谱

    Figure  9.  Vibration spectra of railhead and fastener clip

    图  10  轴箱振动加速度

    Figure  10.  Vibration accelerations of axle box

    图  11  轴箱垂向和横向振动频谱

    Figure  11.  Vertical and transverse vibration spectra of axle box

    图  12  车辆-轨道耦合动力学模型

    Figure  12.  Vehicle-track coupling dynamics model

    图  13  一系悬挂转臂

    Figure  13.  Tumbler of primary suspension

    图  14  不同波长和波深下的轮轨力

    Figure  14.  Wheel/rail forces under different wavelengths and depths

    图  15  钢轨波磨波深

    Figure  15.  Depths of rail corrugation

    表  1  钢轨波磨测试结果

    Table  1.   Test result of rail corrugation

  • [1] SATO Y, MATSUMOTO A, KNOTHE K. Review on rail corrugation studies[J]. Wear, 2002, 253(1/2): 130-139. https://www.sciencedirect.com/science/article/pii/S0043164802000923
    [2] GRASSIE S L. Rail corrugation: characteristics, causes, and treatments[J]. Journal of Rail and Rapid Transit, 2009, 223(6): 581-596. doi: 10.1243/09544097JRRT264
    [3] OOSTERMEIJER K H. Review on short pitch rail corrugation studies[J]. Wear, 2008, 265(9/10): 1231-1237. https://www.sciencedirect.com/science/article/pii/S0043164808001439
    [4] AHLBECK D R, DANIELS L E. Investigation of rail corrugations on the Baltimore Metro[J]. Wear, 1991, 144(1/2): 197-210. https://www.sciencedirect.com/science/article/pii/004316489190015M
    [5] TASSILLY E, VINCENT N. Rail corrugations: analytical model and field tests[J]. Wear, 1991, 144(1/2): 163-178. https://www.sciencedirect.com/science/article/pii/004316489190013K
    [6] TASSILLY E, VINCENT N. A linear model for the corrugation of rails[J]. Journal of Sound and Vibration, 1991, 150(1): 25-45. doi: 10.1016/0022-460X(91)90400-E
    [7] GóMEZ I, VADILLO E G. An analytical approach to study a special case of booted sleeper track rail corrugation[J]. Wear, 2001, 251(1-12): 916-924. doi: 10.1016/S0043-1648(01)00750-5
    [8] DIANA G, CHELI F, BRUNI S, et al. Experimental and numerical investigation on subway short pitch corrugation[J]. Vehicle System Dynamics, 1998, 29(S): 234-245.
    [9] TORSTENSSON P T, NIELSEN J C O. Monitoring of rail corrugation growth due to irregular wear on a railway metro curve[J]. Wear, 2009, 267(1-4): 556-561. doi: 10.1016/j.wear.2009.01.046
    [10] GRASSIE S L, ELKINS J A. Rail corrugation on North American transit systems[J]. Vehicle System Dynamics, 1998, 29(S): 5-17. doi: 10.1080/00423119808969548
    [11] WU T X, THOMPSON D J. An investigation into rail corrugation due to micro-slip under multiple wheel/rail interactions[J]. Wear, 2005, 258(7/8): 1115-1125. https://www.sciencedirect.com/science/article/pii/S0043164804003217
    [12] JIN X S, WEN Z F, WANG K Y, et al. Three-dimensional train-track model for study of rail corrugation[J]. Journal of Sound and Vibration, 2006, 293(3-5): 830-855. doi: 10.1016/j.jsv.2005.12.013
    [13] NIELSEN J C O. Numerical prediction of rail roughness growth on tangent railway tracks[J]. Journal of Sound and Vibration, 2003, 267(3): 537-548. doi: 10.1016/S0022-460X(03)00713-2
    [14] JIN Xue-song, WANG Kai-yun, WEN Ze-feng, et al. Effect of rail corrugation on vertical dynamics of railway vehicle coupled with a track[J]. Acta Mechanica Sinica, 2005, 21(1): 95-102. doi: 10.1007/s10409-004-0010-x
    [15] NIELSEN J C O, EKBERG A, LUNDéN R. Influence of short-pitch wheel/rail corrugation on rolling contact fatigue of railway wheels[J]. Journal of Rail and Rapid Transit, 2005, 219(3): 177-187. doi: 10.1243/095440905X8871
    [16] 钟硕乔, 吴磊, 李伟, 等. 钢轨波磨对地铁车辆动力学响应的影响[J]. 计算机辅助工程, 2012, 21(6): 26-30. doi: 10.3969/j.issn.1006-0871.2012.06.006

    ZHONG Shuo-qiao, WU Lei, LI Wei, et al. Effect of rail corrugation on dynamical response of metro vehicle[J]. Computer Aided Engineering, 2012, 21(6): 26-30. (in Chinese) doi: 10.3969/j.issn.1006-0871.2012.06.006
    [17] EKBERG A, KABO E, NIELSEN J C O, et al. Subsurface initiated rolling contact fatigue of railway wheels as generated by rail corrugation[J]. International Journal of Solids and Structures, 2007, 44(24): 7975-7987. doi: 10.1016/j.ijsolstr.2007.05.022
    [18] JENKINS H H, STEPHENSON J E, CLAYTON G A, et al. The effect of track and vehicle parameters on wheel/rail vertical dynamic forces[J]. Railway Engineering Journal, 1974, 3(1): 2-16. https://trid.trb.org/view.aspx?id=19226
    [19] ZHAI Wan-ming, WANG Kai-yun, CAI Cheng-biao. Fundamentals of vehicle-track coupled dynamics[J]. Vehicle System Dynamics, 2009, 47(11): 1349-1376. doi: 10.1080/00423110802621561
    [20] CHEN G, ZHAI W M. A new wheel/rail spatially dynamic coupling model and its verification[J]. Vehicle System Dynamics, 2004, 41(4): 301-322. doi: 10.1080/00423110412331315178
    [21] SHEN Z Y, HEDRICK J K, ELKINS J A. A comparison of alternative creep force models for rail vehicle dynamic analysis[J]. Vehicle System Dynamics, 1983, 12(1-3): 79-83. doi: 10.1080/00423118308968725
  • 加载中
图(15) / 表(1)
计量
  • 文章访问数:  910
  • HTML全文浏览量:  147
  • PDF下载量:  1005
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-08-20
  • 刊出日期:  2015-02-25

目录

    /

    返回文章
    返回