留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于自适应多尺度形态学分析的车轮扁疤故障诊断方法

李奕璠 刘建新 林建辉 李忠继

李奕璠, 刘建新, 林建辉, 李忠继. 基于自适应多尺度形态学分析的车轮扁疤故障诊断方法[J]. 交通运输工程学报, 2015, 15(1): 58-65. doi: 10.19818/j.cnki.1671-1637.2015.01.008
引用本文: 李奕璠, 刘建新, 林建辉, 李忠继. 基于自适应多尺度形态学分析的车轮扁疤故障诊断方法[J]. 交通运输工程学报, 2015, 15(1): 58-65. doi: 10.19818/j.cnki.1671-1637.2015.01.008
LI Yi-fan, LIU Jian-xin, LIN Jian-hui, LI Zhong-ji. Fault diagnosis method of railway vehicle with wheel flat based on self-adaptive multi-scale morphology analysis[J]. Journal of Traffic and Transportation Engineering, 2015, 15(1): 58-65. doi: 10.19818/j.cnki.1671-1637.2015.01.008
Citation: LI Yi-fan, LIU Jian-xin, LIN Jian-hui, LI Zhong-ji. Fault diagnosis method of railway vehicle with wheel flat based on self-adaptive multi-scale morphology analysis[J]. Journal of Traffic and Transportation Engineering, 2015, 15(1): 58-65. doi: 10.19818/j.cnki.1671-1637.2015.01.008

基于自适应多尺度形态学分析的车轮扁疤故障诊断方法

doi: 10.19818/j.cnki.1671-1637.2015.01.008
基金项目: 

国家自然科学基金项目 51375403

中央高校基本科研业务费青年教师百人计划项目 2682014BR001EM

详细信息
    作者简介:

    李奕璠(1985-), 男, 四川南充人, 西南交通大学讲师, 工学博士, 从事机械故障诊断技术研究

  • 中图分类号: U270.11

Fault diagnosis method of railway vehicle with wheel flat based on self-adaptive multi-scale morphology analysis

More Information
  • 摘要: 建立了56自由度车辆动力学模型与车轮扁疤模型, 计算了车辆的动态响应。车辆的振动信息往往受到轨道不平顺和车速波动等因素的影响, 为了能在强噪声背景下有效提取轮轨冲击特征, 提出了自适应多尺度形态学滤波分析方法, 研究了车轮扁疤引起的轴箱振动特征, 分析了轨道激扰和车辆运行速度对车轮扁疤故障诊断效果的影响。仿真结果表明: 在100、150、200km·h-1的车速和美国五级谱、三级谱的激扰下, 分别使用7个和9个尺度的结构元素进行形态学滤波, 正确地识别出10、15、20Hz车轮扁疤故障频率。实测结果表明: 当车速为40km·h-1时, 使用7个尺度的结构元素进行形态学滤波, 提取出了2 Hz的故障频率, 此频率与理论故障频率相对应, 诊断结果可靠。

     

  • 图  1  扁疤车辆轴箱振动信号与频谱

    Figure  1.  Vibration signal and frequency spectrum ofaxle box for vehicle with wheel flat

    图  2  图 1(a)信号的滤波结果与频谱

    Figure  2.  Filtering result and frequency spectrumof signal presented in Fig. 1(a)

    图  3  不平顺激励下的轴箱振动信号与频谱

    Figure  3.  Axle box vibration signal and frequency spectrumunder irregularity excitation

    图  4  图 3(a)信号的滤波结果与频谱

    Figure  4.  Filtering result and frequency spectrum ofsignal presented in Fig. 3(a)

    图  5  车速为150km·h-1时的轴箱振动信号与频谱

    Figure  5.  Axle box vibration signal and frequencyspectrum at 150km·h-1

    图  6  图 5(a)信号的滤波结果与频谱

    Figure  6.  Filtering result and frequency spectrumof signal presented in Fig. 5(a)

    图  7  车速200km·h-1时的轴箱振动信号与频谱

    Figure  7.  Axle box vibration signal and frequencyspectrum at 200km·h-1

    图  8  图 7(a)信号的滤波结果与频谱

    Figure  8.  Filtering result and frequency spectrum ofsignal presented in Fig.7(a)

    图  9  实测信号与频谱

    Figure  9.  Measuring signal and frequency spectrum

    图  10  实测信号的滤波结果与频谱

    Figure  10.  Filtering result and frequency spectrumof measuring signal

  • [1] 田丽丽, 方宗德, 赵勇. 铁路货车车轮踏面损伤检测中剥离与擦伤定位方法[J]. 铁道学报, 2009, 31(5): 31-36. doi: 10.3969/j.issn.1001-8360.2009.05.005

    TIAN Li-li, FANG Zong-de, ZHAO Yong. Location methods of peeling and flat spots in detection of wheel tread damages of railway wagons[J]. Journal of the China Railway Society, 2009, 31(5): 31-36. (in Chinese) doi: 10.3969/j.issn.1001-8360.2009.05.005
    [2] BRIZUELA J, FRITSCH C, IBáÑEZ A. Railway wheel-flat detection and measurement by ultrasound[J]. Transportation Research Part C: Emerging Technologies, 2011, 19(6): 975-984. doi: 10.1016/j.trc.2011.04.004
    [3] 冯其波, 赵雁, 崔建英. 车轮踏面擦伤动态定量测量新方法[J]. 机械工程学报, 2002, 38(2): 120-122. doi: 10.3321/j.issn:0577-6686.2002.02.028

    FENG Qi-bo, ZHAO Yan, CUI Jian-ying. New dynamic method to quantitatively measure wheel flats of trains[J]. Chinese Journal of Mechanical Engineering, 2002, 38(2): 120-122. doi: 10.3321/j.issn:0577-6686.2002.02.028
    [4] MILKOVIC' D, SIMIC' G, JAKOVLJEVIC' n. Wayside system for wheel-rail contact forces measurements[J]. Measurement, 2013, 46(9): 3308-3318. doi: 10.1016/j.measurement.2013.06.017
    [5] FILOGRANO M L, GUILLéN P C, RODRíGUEZ-BARRIOS A, et al. Real-time monitoring of railway traffic using fiber bragg grating sensors[J]. IEEE Sensors Journal, 2012, 12(1): 85-92. doi: 10.1109/JSEN.2011.2135848
    [6] BELOTTI V, CRENNA F, MICHELINI R C, et al. Wheel-flat diagnostic tool via wavelet transform[J]. Mechanical Systems and Signal Processing, 2006, 20(8): 1953-1966. doi: 10.1016/j.ymssp.2005.12.012
    [7] 葛林富, 尹治本, 朱怀芳. 机车踏面擦伤计算机智能检测原理及实现[J]. 铁道学报, 1993, 15(2): 35-39. doi: 10.3321/j.issn:1001-8360.1993.02.005

    GE Lin-fu, YIN Zhi-ben, ZHU Huai-fang. Micro-computer intelligence detection of locomotive wheel tread irregularities[J]. Journal of the China Railway Society, 1993, 15(2): 35-39. doi: 10.3321/j.issn:1001-8360.1993.02.005
    [8] GULLERS P, DREIK P, NIELSEN J C O, et al. Track condition analyser: identification of rail rolling surface defects, likely to generate fatigue damage in wheels, using instrumented wheelset measurements[J]. Journal of Rail and Rapid Transit, 2011, 225(1): 1-13. doi: 10.1243/09544097JRRT398
    [9] MOLODOVA M, LI Z L, DOLLEVOET R. Axle box acceleration: measurement and simulation for detection of short track defects[J]. Wear, 2011, 271(1/2): 349-356.
    [10] DING Jian-ming, LIN Jian-hui, WANG Guang-ming, et al. Time-frequency analysis of wheel-rail shock in the presence of wheel flat[J]. Journal of Traffic and Transportation Engineering: English Edition, 2014, 1(6): 457-466. doi: 10.1016/S2095-7564(15)30296-8
    [11] TSAI H C, WANG C Y, HUANG N E, et al. Railway track inspection based on the vibration response to a scheduled train and the Hilbert-Huang transform[J]. Journal of Rail and Rapid Transit, 2014, DOI: 10.1177/0954409714527930.
    [12] 胡爱军, 唐贵基, 安连锁. 基于数学形态学的旋转机械振动信号降噪方法[J]. 机械工程学报, 2006, 42(4): 127-130. doi: 10.3321/j.issn:0577-6686.2006.04.023

    HU Ai-jun, TANG Gui-ji, AN Lian-suo. De-noising technique for vibration signals of rotating machinery based on mathematical morphology filter[J]. Chinese Journal of Mechanical Engineering, 2006, 42(4): 127-130. (in Chinese) doi: 10.3321/j.issn:0577-6686.2006.04.023
    [13] SERRA J, VINCENT L. An overview of morphological filtering[J]. Circuits, Systems and Signal Processing, 1992, 11(1): 47-108. doi: 10.1007/BF01189221
    [14] 章立军, 徐金梧, 阳建宏, 等. 自适应多尺度形态学分析及其在轴承故障诊断中的应用[J]. 北京科技大学学报, 2008, 30(4): 441-445. doi: 10.3321/j.issn:1001-053X.2008.04.022

    ZHANG Li-jun, XU Jin-wu, YANG Jian-hong, et al. Adaptive multiscale morphology analysis and its application in fault diagnosis of bearings[J]. Journal of University of Science and Technology Beijing, 2008, 30(4): 441-445. doi: 10.3321/j.issn:1001-053X.2008.04.022
    [15] LI Bing, ZHANG Pei-lin, WANG Zheng-jun, et al. Gear fault detection using multi-scale morphological filters[J]. Measurement, 2011, 44(10): 2078-2089. doi: 10.1016/j.measurement.2011.08.010
    [16] ZHANG Li-jun, XU Jin-wu, YANG Jian-hong, et al. Multiscale morphology analysis and its application to fault diagnosis[J]. Mechanical Systems and Signal Processing, 2008, 22(3): 597-610. doi: 10.1016/j.ymssp.2007.09.010
    [17] SAMANTA B, AL-BALUSHI K R, AL-ARAIMI S A. Artificial neural networks and support vector machines with genetic algorithm for bearing fault detection[J]. Engineering Applications of Artificial Intelligence, 2003, 16(7/8): 657-665.
    [18] 李忠继, 魏来, 戴焕云, 等. 基于Hilbert-Huang变换的车轮扁疤识别方法[J]. 交通运输工程学报, 2012, 12(4): 33-41. doi: 10.3969/j.issn.1671-1637.2012.04.005

    LI Zhong-ji, WEI Lai, DAI Huan-yun, et al. Identification method of wheel flat based on Hilbert-Huang transform[J]. Journal of Traffic and Transportation Engineering, 2012, 12(4): 33-41. (in Chinese) doi: 10.3969/j.issn.1671-1637.2012.04.005
    [19] MAZILU T. A dynamic model for the impact between the wheel flat and rail[J]. UPB Scientific Bulletin Series D: Mechanical Engineering, 2007, 69(2): 45-58.
  • 加载中
图(10)
计量
  • 文章访问数:  651
  • HTML全文浏览量:  87
  • PDF下载量:  731
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-07-08
  • 刊出日期:  2015-02-25

目录

    /

    返回文章
    返回