-
摘要: 基于环量的三元设计方法和计算流体动力学, 研究了叶片数、叶片流向环量中心位置与叶片出口边环量对叶轮性能的影响, 分析了导叶进口边和出口边环量对喷水推进轴流泵性能的影响, 通过合理地控制这些因素, 设计了一种效率高、空化性能好的喷水推进轴流泵。在流量为56.2m3·s-1时, 泵的扬程为35.9m, 功率为21 465kW, 效率为92.3%, 可见, 设计泵的性能优良, 效率高。研究结果表明: 增加叶片数能够有效减小单叶片转矩, 当叶片数从5个增加到7个时, 单叶片转矩减小了21%;叶片环量中心靠近出口边, 有利于提高叶轮的空化性能, 当环量中心从叶片弦长的0.3处移动到0.7处时, 叶轮吸力面空化面积减小80%;叶轮出口边环量斜率会影响叶轮效率, 当斜率分别为0.8、1.0和1.2时, 叶轮效率逐步提高; 当出口边环量从0.40增加到0.50时, 叶轮的扬程和功率近似线性增加, 扬程增加19.9%, 功率增加19.5%;随着导叶进口边环量与出口边环量的比值的增大, 泵效率先增大后减小, 当比值为0.93时, 泵的效率最高; 导叶出口边环量分布会影响泵的效率、出口不均匀度和出口周向动能, 当导叶出口边环量为-0.05时, 泵的效率最高, 出口不均匀度和出口周向动能最小。Abstract: By using three-dimensional design method based on circulation and computational fluid dynamics, the effects of blade number, blade circulation center position and blade trailing edge circulation on rotor performances were studied, the influences of leading edge circulation and trailing edge circulation of stator on axial waterjet pump performances were analyzed, and an axial waterjet pump with high efficiency and good cavitation capacity was designed by controlling the factors properly.When the flow is 56.2m3·s-1, the head, power and efficiency of the pump are 35.9m, 21 465 kW and 92.3%, respectively, so the properties and efficiency of the pump are high.Analysis result shows that increasing blade number is effective to decrease single blade torque, when blade number increases from 5to 7, single blade torque decreases by 21%.Circulation center moving closer to trailing edge is beneficial to better cavitation performance of rotor, when circulation center moves from 3/10 to 7/10 of blade string length, cavitation area on rotor suction side decreases by 80%.The slope of rotor trailing edge circulation affects rotor efficiency, when the slope changes from 0.8to 1.2, rotor efficiency increases gradually.Rotorhead and rotor power almost increase linearly when trailing edge circulation ranges from 0.4to0.5, rotor head increases by 19.9%, and rotor power increases by 19.5%.Pump efficiency firstly increases and then decreases with the ratio increase of stator leading edge circulation to rotor trailing edge circulation, and the efficiency is highest when the ratio is 0.93.Stator trailing edge circulation has effects on pump efficiency, outlet non-uniformity and outlet circumfluent energy, when stator trailing edge circulation is-0.05, pump efficiency is highest, and outlet non-uniformity and outlet circumfluent energy are least.
-
表 1 叶轮出口边环量的影响
Table 1. Effect of circulation on rotor trailing edge
表 2 不同环量分布时的泵性能
Table 2. Pump performances with different circulation distributions
表 3 功率计算结果
Table 3. Computational result of power
表 4 设计的喷水推进轴流泵的性能
Table 4. Performances of designed axial waterjet pump
-
[1] ALLISON J. Marine waterjet propulsion[J]. SNAME Transactions, 1993, 101: 275-335. [2] WESSEL J. Waterjet propulsion for a 3 500ton corvette from BLOHM+VOSS[C]∥RINA. International Conference on Waterjet PropulsionⅣ. London: The Royal Institution of Naval Architects, 2004: 18-26. [3] GILES W, DINHAM-PEREN T, AMARATUNGA S, et al. The advanced waterjet: propulsor performance and effect on ship design[C]∥IMarEST. 10th International Naval Engineering Conference and Exhibition. London: IMarEST, 2010: 1-19. [4] KERREBROCK J L. Principles of Turbomachinery[M]. London: The MIT Press, 1996. [5] ALLISION J L, JIANG C, STRICKER J G. Modern tools for waterjet pump design and recent advance in the field[C]∥RINA. International Conference on Waterjet PropulsionⅡ. London: The Royal Institution of Naval Architects, 1998: 23-34. [6] LAVIS D R, FORSTELL B G, PURNEL J G. Compact waterjets for high-speed ships[J]. Ships and Offshore Structures, 2007, 2(2): 115-125. doi: 10.1080/17445300701430101 [7] PURNELL J. Waterjet self-propulsion model test for application to a high-speed sealift ship[R]. Severna Park: CDI Marine Company, 2007. [8] MICHAEL T J, SCHROEDER S D, BECNEL A J. Design of the ONR AxWJ-2axial flow waterjet pump[R]. Bethesda: Naval Surface Warfare Center, 2008. [9] SCHROEDER S, KIM S E, JASAK H. Towards predicting performance of an axial flow waterjet including the effects of cavitation and thrust breakdown[C]∥ICMIA. Proceedings of the First International Symposium on Marine Propulsors. Brussels: ICMIA, 2009: 387-394. [10] ZANGENEH M. Advanced design software for pumps[J]. World Pumps, 2007(489): 28-31. [11] ZANGENEH M, GOTO A. Turbodesign-1: next generation design software for pumps[J]. World Pumps, 2003(437): 32-36. [12] ZANGENEH M, DANESHKHAH K, DACOSTA B. A multiobjective automatic optimization strategy for design of waterjet pumps[C]∥RINA. International Conference on Waterjet PropulsionⅤ. London: The Royal Institution of Naval Architects, 2008: 27-32. [13] 罗兴琦, 陈乃祥, 林汝长. 混流式转轮的准三维设计[J]. 水利学报, 1996(10): 18-21, 26. doi: 10.3321/j.issn:0559-9350.1996.10.004LUO Xing-qi, CHEN Nai-xiang, LIN Ru-chang. A quasi three-dimensional design method for francis runner[J]. Journal of Hydraulic Engineering, 1996(10): 18-21, 26. (in Chinese). doi: 10.3321/j.issn:0559-9350.1996.10.004 [14] 彭国义, 罗兴琦, 郭齐胜, 等. 轴流式水轮机转轮的准三维有旋流动设计[J]. 水利学报, 1996(10): 10-17. doi: 10.3321/j.issn:0559-9350.1996.10.003PENG Guo-yi, LUO Xing-qi, GUO Qi-sheng, et al. A quasi three-dimensional inverse method for Kaplan turbine runner in rotational flow[J]. Journal of Hydraulic Engineering, 1996(10): 10-17. (in Chinese). doi: 10.3321/j.issn:0559-9350.1996.10.003 [15] 曹玉良, 王永生, 靳栓宝. 浸没式喷水推进泵设计及装船后性能预报[J]. 西安交通大学学报, 2014, 48(5): 96-101. https://www.cnki.com.cn/Article/CJFDTOTAL-XAJT201405017.htmCAO Yu-liang, WANG Yong-sheng, JIN Shuan-bao. Design of submerged waterjet pump and performance prediction after installation[J]. Journal of Xi' an Jiaotong University, 2014, 48(5): 96-101. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XAJT201405017.htm [16] 靳栓宝, 王永生, 丁江明, 等. 混流式喷水推进泵三元设计及数值试验[J]. 哈尔滨工程大学学报, 2012, 33(10): 1223-1227. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBG201210007.htmJIN Shuan-bao, WANG Yong-sheng, DING Jiang-ming, et al. Three-dimensional design and numerical experiment of mixedflow waterjet with CFD[J]. Journal of Harbin Engineering University, 2012, 33(10): 1223-1227. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HEBG201210007.htm [17] 靳栓宝, 王永生. 基于三元设计及数值试验轴流泵抗空化性能[J]. 排灌机械工程学报, 2013, 31(9): 763-767. https://www.cnki.com.cn/Article/CJFDTOTAL-PGJX201309007.htmJIN Shuan-bao, WANG Yong-sheng. 3D design of axial-flow pump and numerical prediction of its cavitation performance[J]. Journal of Drainage and Irrigation Machinery Engineering, 2013, 31(9): 763-767. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-PGJX201309007.htm [18] TAYLOR T E, KERWIN J E, SCHERER J O. Waterjet pump design and analysis using a coupled lifting-surface and RANS procedure[C]∥RINA. International Conference on Waterjet Propulsion Ⅱ. London: The Royal Institution of Naval Arichtects, 1998: 156-172. [19] HUNTSMAN I, HOTHERSALL R. Development of quasi3Ddesign methods and 3Dflow solvers for the hrdrodynamic design of waterjets[C]∥RINA. International Conference on Waterjet Propulsion Ⅲ. London: The Royal Institution of Naval Arichtects, 2001: 213-222. [20] MOON I S, KIM K S, LEE C S. Blade tip gap flow model for performance analysis of waterjet propulsor[C]∥IABEM. International Association for Boundary Element Methods(IABEM) 2002 Symposium. Austin: IABEM, 2002: 1-14.