留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

喷水推进轴流泵三元水力设计

曹玉良 王永生 靳栓宝

曹玉良, 王永生, 靳栓宝. 喷水推进轴流泵三元水力设计[J]. 交通运输工程学报, 2015, 15(2): 42-49. doi: 10.19818/j.cnki.1671-1637.2015.02.005
引用本文: 曹玉良, 王永生, 靳栓宝. 喷水推进轴流泵三元水力设计[J]. 交通运输工程学报, 2015, 15(2): 42-49. doi: 10.19818/j.cnki.1671-1637.2015.02.005
CAO Yu-liang, WANG Yong-sheng, JIN Shuan-bao. Three-dimensional hydraulic design of axial waterjet pump[J]. Journal of Traffic and Transportation Engineering, 2015, 15(2): 42-49. doi: 10.19818/j.cnki.1671-1637.2015.02.005
Citation: CAO Yu-liang, WANG Yong-sheng, JIN Shuan-bao. Three-dimensional hydraulic design of axial waterjet pump[J]. Journal of Traffic and Transportation Engineering, 2015, 15(2): 42-49. doi: 10.19818/j.cnki.1671-1637.2015.02.005

喷水推进轴流泵三元水力设计

doi: 10.19818/j.cnki.1671-1637.2015.02.005
基金项目: 

国家自然科学基金项目 51309229

详细信息
    作者简介:

    曹玉良(1988-), 男, 湖北十堰人, 海军工程大学工学博士研究生, 从事水泵研究

    王永生(1955-), 男, 浙江富阳人, 海军工程大学教授, 工学博士

  • 中图分类号: U664.34

Three-dimensional hydraulic design of axial waterjet pump

More Information
  • 摘要: 基于环量的三元设计方法和计算流体动力学, 研究了叶片数、叶片流向环量中心位置与叶片出口边环量对叶轮性能的影响, 分析了导叶进口边和出口边环量对喷水推进轴流泵性能的影响, 通过合理地控制这些因素, 设计了一种效率高、空化性能好的喷水推进轴流泵。在流量为56.2m3·s-1时, 泵的扬程为35.9m, 功率为21 465kW, 效率为92.3%, 可见, 设计泵的性能优良, 效率高。研究结果表明: 增加叶片数能够有效减小单叶片转矩, 当叶片数从5个增加到7个时, 单叶片转矩减小了21%;叶片环量中心靠近出口边, 有利于提高叶轮的空化性能, 当环量中心从叶片弦长的0.3处移动到0.7处时, 叶轮吸力面空化面积减小80%;叶轮出口边环量斜率会影响叶轮效率, 当斜率分别为0.8、1.0和1.2时, 叶轮效率逐步提高; 当出口边环量从0.40增加到0.50时, 叶轮的扬程和功率近似线性增加, 扬程增加19.9%, 功率增加19.5%;随着导叶进口边环量与出口边环量的比值的增大, 泵效率先增大后减小, 当比值为0.93时, 泵的效率最高; 导叶出口边环量分布会影响泵的效率、出口不均匀度和出口周向动能, 当导叶出口边环量为-0.05时, 泵的效率最高, 出口不均匀度和出口周向动能最小。

     

  • 图  1  叶片设计流程

    Figure  1.  Process of blade design

    图  2  轴面形状

    Figure  2.  Meridional geometry

    图  3  叶轮网格

    Figure  3.  Meshes of rotor

    图  4  叶轮效率

    Figure  4.  Rotor efficiency

    图  5  单叶片转矩

    Figure  5.  Single blade torque

    图  6  流向环量分布

    Figure  6.  Circulation distributions along streamlines

    图  7  叶轮性能

    Figure  7.  Rotor performances

    图  8  叶轮吸力面空化区域

    Figure  8.  Cavitation areas on rotor suction sides

    图  9  三种叶轮的效率

    Figure  9.  Efficiencies of three rotors

    图  10  叶轮功率随出口边环量的变化

    Figure  10.  Rotor power change with circulation on trailing edge

    图  11  导叶网格

    Figure  11.  Meshes of stator

    图  12  泵效率随着环量比的变化

    Figure  12.  Pump efficiency change with circulation ratio

    图  13  导叶出口边环量分布

    Figure  13.  Circulation distributions on stator trailing edge

    图  14  喷水推进混流泵几何模型

    Figure  14.  Geometric model of mixed-flow waterjet pump

    图  15  喷水推进轴流泵几何模型

    Figure  15.  Geometric model of axial waterjet pump

    图  16  叶轮压力分布

    Figure  16.  Pressure distributions on rotors

    表  1  叶轮出口边环量的影响

    Table  1.   Effect of circulation on rotor trailing edge

    表  2  不同环量分布时的泵性能

    Table  2.   Pump performances with different circulation distributions

    表  3  功率计算结果

    Table  3.   Computational result of power

    表  4  设计的喷水推进轴流泵的性能

    Table  4.   Performances of designed axial waterjet pump

  • [1] ALLISON J. Marine waterjet propulsion[J]. SNAME Transactions, 1993, 101: 275-335.
    [2] WESSEL J. Waterjet propulsion for a 3 500ton corvette from BLOHM+VOSS[C]∥RINA. International Conference on Waterjet PropulsionⅣ. London: The Royal Institution of Naval Architects, 2004: 18-26.
    [3] GILES W, DINHAM-PEREN T, AMARATUNGA S, et al. The advanced waterjet: propulsor performance and effect on ship design[C]∥IMarEST. 10th International Naval Engineering Conference and Exhibition. London: IMarEST, 2010: 1-19.
    [4] KERREBROCK J L. Principles of Turbomachinery[M]. London: The MIT Press, 1996.
    [5] ALLISION J L, JIANG C, STRICKER J G. Modern tools for waterjet pump design and recent advance in the field[C]∥RINA. International Conference on Waterjet PropulsionⅡ. London: The Royal Institution of Naval Architects, 1998: 23-34.
    [6] LAVIS D R, FORSTELL B G, PURNEL J G. Compact waterjets for high-speed ships[J]. Ships and Offshore Structures, 2007, 2(2): 115-125. doi: 10.1080/17445300701430101
    [7] PURNELL J. Waterjet self-propulsion model test for application to a high-speed sealift ship[R]. Severna Park: CDI Marine Company, 2007.
    [8] MICHAEL T J, SCHROEDER S D, BECNEL A J. Design of the ONR AxWJ-2axial flow waterjet pump[R]. Bethesda: Naval Surface Warfare Center, 2008.
    [9] SCHROEDER S, KIM S E, JASAK H. Towards predicting performance of an axial flow waterjet including the effects of cavitation and thrust breakdown[C]∥ICMIA. Proceedings of the First International Symposium on Marine Propulsors. Brussels: ICMIA, 2009: 387-394.
    [10] ZANGENEH M. Advanced design software for pumps[J]. World Pumps, 2007(489): 28-31.
    [11] ZANGENEH M, GOTO A. Turbodesign-1: next generation design software for pumps[J]. World Pumps, 2003(437): 32-36.
    [12] ZANGENEH M, DANESHKHAH K, DACOSTA B. A multiobjective automatic optimization strategy for design of waterjet pumps[C]∥RINA. International Conference on Waterjet PropulsionⅤ. London: The Royal Institution of Naval Architects, 2008: 27-32.
    [13] 罗兴琦, 陈乃祥, 林汝长. 混流式转轮的准三维设计[J]. 水利学报, 1996(10): 18-21, 26. doi: 10.3321/j.issn:0559-9350.1996.10.004

    LUO Xing-qi, CHEN Nai-xiang, LIN Ru-chang. A quasi three-dimensional design method for francis runner[J]. Journal of Hydraulic Engineering, 1996(10): 18-21, 26. (in Chinese). doi: 10.3321/j.issn:0559-9350.1996.10.004
    [14] 彭国义, 罗兴琦, 郭齐胜, 等. 轴流式水轮机转轮的准三维有旋流动设计[J]. 水利学报, 1996(10): 10-17. doi: 10.3321/j.issn:0559-9350.1996.10.003

    PENG Guo-yi, LUO Xing-qi, GUO Qi-sheng, et al. A quasi three-dimensional inverse method for Kaplan turbine runner in rotational flow[J]. Journal of Hydraulic Engineering, 1996(10): 10-17. (in Chinese). doi: 10.3321/j.issn:0559-9350.1996.10.003
    [15] 曹玉良, 王永生, 靳栓宝. 浸没式喷水推进泵设计及装船后性能预报[J]. 西安交通大学学报, 2014, 48(5): 96-101. https://www.cnki.com.cn/Article/CJFDTOTAL-XAJT201405017.htm

    CAO Yu-liang, WANG Yong-sheng, JIN Shuan-bao. Design of submerged waterjet pump and performance prediction after installation[J]. Journal of Xi' an Jiaotong University, 2014, 48(5): 96-101. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XAJT201405017.htm
    [16] 靳栓宝, 王永生, 丁江明, 等. 混流式喷水推进泵三元设计及数值试验[J]. 哈尔滨工程大学学报, 2012, 33(10): 1223-1227. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBG201210007.htm

    JIN Shuan-bao, WANG Yong-sheng, DING Jiang-ming, et al. Three-dimensional design and numerical experiment of mixedflow waterjet with CFD[J]. Journal of Harbin Engineering University, 2012, 33(10): 1223-1227. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HEBG201210007.htm
    [17] 靳栓宝, 王永生. 基于三元设计及数值试验轴流泵抗空化性能[J]. 排灌机械工程学报, 2013, 31(9): 763-767. https://www.cnki.com.cn/Article/CJFDTOTAL-PGJX201309007.htm

    JIN Shuan-bao, WANG Yong-sheng. 3D design of axial-flow pump and numerical prediction of its cavitation performance[J]. Journal of Drainage and Irrigation Machinery Engineering, 2013, 31(9): 763-767. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-PGJX201309007.htm
    [18] TAYLOR T E, KERWIN J E, SCHERER J O. Waterjet pump design and analysis using a coupled lifting-surface and RANS procedure[C]∥RINA. International Conference on Waterjet Propulsion Ⅱ. London: The Royal Institution of Naval Arichtects, 1998: 156-172.
    [19] HUNTSMAN I, HOTHERSALL R. Development of quasi3Ddesign methods and 3Dflow solvers for the hrdrodynamic design of waterjets[C]∥RINA. International Conference on Waterjet Propulsion Ⅲ. London: The Royal Institution of Naval Arichtects, 2001: 213-222.
    [20] MOON I S, KIM K S, LEE C S. Blade tip gap flow model for performance analysis of waterjet propulsor[C]∥IABEM. International Association for Boundary Element Methods(IABEM) 2002 Symposium. Austin: IABEM, 2002: 1-14.
  • 加载中
图(16) / 表(4)
计量
  • 文章访问数:  1053
  • HTML全文浏览量:  202
  • PDF下载量:  822
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-11-22
  • 刊出日期:  2015-02-25

目录

    /

    返回文章
    返回