-
摘要: 基于种群演变和共生理论, 采用Cobb-Douglas生产函数描述航运市场整体需求, 从顾客的购买行为出发, 以收益最大作为集装箱班轮公司的经营目标, 以基于时间序列的运力与运价作为决策变量, 构建了集装箱班轮公司航次运力销售过程优化模型。运用Taylor公式与最小二乘法等代数变换手段将非线性规划问题转化为线性规划问题, 对关键参数进行了标定与敏感性分析, 并利用MATLAB软件进行仿真验证。仿真结果表明: 当单个集装箱班轮公司的运力为104 TEU时, 采用常规的销售策略, 集装箱班轮公司可售出的运力为7 534~9 966TEU, 获得收益为1 233 158~12 915 936USD, 采用提出的优化模型, 可售出的运力为9 915TEU, 获得收益为15 111 975USD, 收益至少提高17%;当2个集装箱班轮公司的运力均为104 TEU时, 采用提出的优化模型, 2个集装箱班轮公司可售出的运力分别为9 920、9 947TEU, 获得收益分别为14 241 771、9 737 528USD, 达到纳什均衡; 当3个集装箱班轮公司的运力均为104 TEU时, 采用提出的优化模型, 3个集装箱班轮公司可售出的运力分别为8 289、5 526、6 034TEU, 获得收益分别为6 755 755、6 119 906、4 377 758USD, 达到纳什均衡。可见提出的模型可描述多个集装箱班轮公司运力销售情况, 且表现出显著的优化效果。Abstract: On the basis of species evolution and symbiosis theory, the Cobb-Douglas production function was used to describe the whole demand of shipping market, the purchasing behavior of customer was taken as starting point, the maximum revenue was taken as the operation target of container line, the carrying capacity and freight rate based on time series were taken as decision variables, and the sales process optimization model of voyage capacity for container line was set up.The algebraic transformation means such as Taylor formula and least square method were employed to transform nonlinear programming problem to linear programming problem.The calibration and sensitivity analysis of key parameters were carried out, and MATLAB software was used to perform the simulation verification.Simulation result indicates that when thecarrying capacity of single line is 104 TEU, the container line can sell 7 534-9 966 TEU and obtain1 233 158-12 915 936 USD by using the regular sales scheme.By using the proposed model, the container line can sell 9 915 TEU and obtain 15 111 975 USD, and the revenue increases by 17%at least.When the carrying capacities of two lines are both 104 TEU, the two lines can sell 9 920, 9 947 TEU and obtain 14 241 771, 9 737 528 USD respectively by using the proposed model, and Nash equilibrium is achieved.When the carrying capacities of three lines are all 104 TEU, the three lines can sell 8 289, 5 526, 6 034 TEU and obtain 6 755 755, 6 119 906, 4 377 758 USD respectively by using the proposed model, and Nash equilibrium also is achieved.Obviously, the proposed model can describe the sale situations of voyate capacities for multi-container lines and exhibit the significant optimization effect.
-
Key words:
- container transportation /
- revenue management /
- species evolution /
- symbiosis theory /
- slot inventory /
- pricing
-
表 1 不同定价方案下的收益
Table 1. Revenues under different pricing schemes
-
[1] 施欣. 基于库存论的集装箱舱位保存量优化决策[J]. 中国航海, 2002(1): 59-62. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHH200201015.htmSHI Xin. The study on the optimization of empty container inventory[J]. Navigation of China, 2002(1): 59-62. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHH200201015.htm [2] 汪瑜, 孙宏. 竞争环境下航班舱位控制博弈模型[J]. 交通运输工程学报, 2009, 9(3): 92-97. doi: 10.3321/j.issn:1671-1637.2009.03.018WANG Yu, SUN Hong. Game model of flight seat inventory control in competitive environment[J]. Journal of Traffic and Transportation Engineering, 2009, 9(3): 92-97. (in Chinese). doi: 10.3321/j.issn:1671-1637.2009.03.018 [3] 于辉, 张道明. 可召回机制下的航空公司最优舱位控制策略[J]. 系统工程理论与实践, 2009, 29(6): 32-38. doi: 10.3321/j.issn:1000-6788.2009.06.004YU Hui, ZHANG Dao-ming. Airline' s optimal seating control strategy under the eallable mechanism[J]. Systems Engineering—Theory and Practice, 2009, 29(6): 32-38. (in Chinese). doi: 10.3321/j.issn:1000-6788.2009.06.004 [4] 衡红军, 李雅静. 多航段舱位控制稳健优化模型研究[J]. 计算机工程与设计, 2010, 31(12): 2887-2889. https://www.cnki.com.cn/Article/CJFDTOTAL-SJSJ201012057.htmHENG Hong-jun, LI Ya-jing. Research on robust optimization model of multi-leg capacity inventory control[J]. Computer Engineering and Designing, 2010, 31(12): 2887-2889. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SJSJ201012057.htm [5] 于辉, 王菲. 基于稳健法则的新航线舱位控制策略[J]. 系统管理学报, 2012, 21(2): 224-229. doi: 10.3969/j.issn.1005-2542.2012.02.011YU Hui, WANG Fei. Seating control policy of new route based on the robust rule[J]. Journal of Systems and Management, 2012, 21(2): 224-229. (in Chinese). doi: 10.3969/j.issn.1005-2542.2012.02.011 [6] FENG You-yi, XIAO Bai-chun. A continuous-time seat control model for single-leg flights with no-shows and optimal overbooking upper bound[J]. European Journal of Operational Research, 2006, 174(2): 1298-1316. [7] PARK C K, SEO J Y. Seat inventory control for sequential multiple flights with customer choice behavior[J]. Computers and Industrial Engineering, 2011, 61(4): 1189-1199. [8] CHEN Shao-xiang, GALLEGO G, LI M Z F, et al. Optimal seat allocation for two-flight problems with a flexible demand segment[J]. European Journal of Operational Research, 2010, 201(3): 897-908. [9] HUNG Y F, CHEN C H. An effective dynamic decision policy for the revenue management of an airline flight[J]. International Journal of Production Economics, 2013, 144(2): 440-450. [10] 杨清清, 陈浩凯. 运输服务业中基于期权的存量控制方法研究[J]. 长沙理工大学学报: 社会科学版, 2010, 25(5): 18-20. doi: 10.3969/j.issn.1672-934X.2010.05.004YANG Qing-qing, CHEN Hao-kai. An inventory control model for transport service industry based on options[J]. Journal of Changsha University of Science and Technology: Social Science, 2010, 25(5): 18-20. (in Chinese). doi: 10.3969/j.issn.1672-934X.2010.05.004 [11] GALLEGO G, RYZIN V G. Optimal dynamic pricing of inventories with stochastic demand over finite horizons[J]. Management Science, 1994, 40(8): 999-1020. [12] WEATHERFORD R L, BODILY E S. A taxonomy and research overview of perishable-asset revenue management: yield management, overbooking and pricing[J]. Operations Research, 1992, 40(5): 831-844. [13] FENG You-yi, GALLEGO G. Optimal stopping times for end-of-season sales and optimal stopping times for promotional fares[J]. Management Science, 1995, 41(8): 1371-1391. [14] ZHAO Wen, ZHENG Yu-sheng. Optimal dynamic pricing for perishable assets with non-homogeneous demand[J]. Management Science, 2000, 46(3): 375-388. [15] FENG You-yi, XIAO Bai-chun. Maximizing revenues of perishable assets with risk factor[J]. Operations Research, 1999, 47(2): 337-341. [16] FENG You-yi, GALLEGO G. Perishable asset revenue management with Markovian time dependent demand intensities[J]. Management Science, 2000, 46(7): 941-956. [17] ELMAGHRABY W, KESKINOCAK P. Dynamic pricing in the presence of inventory considerations: research overview, current practices and future directions[J]. Management Science, 2003, 49(10): 1287-1309. [18] BITRAN G, CALDENTEY R. An overview of pricing models for revenue management[J]. Manufacturing and Service Operations Management, 2003, 5(3): 203-229. [19] 殷明, 郑士源, 丁以中, 等. 基于期权理论的国际海上集装箱运输协议动态定价决策[J]. 系统工程理论与实践, 2012, 32(10): 2297-2305. https://www.cnki.com.cn/Article/CJFDTOTAL-XTLL201210024.htmYIN Ming, ZHENG Shi-yuan, DING Yi-zhong, et al. Dynamic pricing decision-making of service contracts for international container ocean shipping based on option theory[J]. Systems Engineering—Theory and Practice, 2012, 32(10): 2297-2305. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XTLL201210024.htm [20] BOOTH A. Symbiosis, selection, and individuality[J]. Biology and Philosphy, 2014, 29(5): 657-673. [21] BOONS F, SPEKKINK W, JIAO Wen-ting. A process perspective on industrial symbiosis theory, methodology, and application[J]. Journal of Industrial Ecology, 2014, 18(3): 341-355. [22] ALFARO J, MILLER S. Applying industrial symbiosis to smallholder farms: modeling a case study in Liberia, West Africa[J]. Journal of Industrial Ecology, 2013, 18(1): 145-154. [23] CHERTOW M, EHRENFELD J. Organizing self-organizing systems: toward a theory of industrial symbiosis[J]. Journal of Industrial Ecology, 2012, 16(1): 13-27. [24] PAQUIN R L, HOWARD-GRENVILLE J. The evolution of facilitated industrial symbiosis[J]. Journal of Industrial Ecology, 2012, 16(1): 83-93.