留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多特征多阈值级联AdaBoost行人检测器

崔华 张骁 郭璐 袁超 薛世焦 宋焕生

崔华, 张骁, 郭璐, 袁超, 薛世焦, 宋焕生. 多特征多阈值级联AdaBoost行人检测器[J]. 交通运输工程学报, 2015, 15(2): 109-117. doi: 10.19818/j.cnki.1671-1637.2015.02.012
引用本文: 崔华, 张骁, 郭璐, 袁超, 薛世焦, 宋焕生. 多特征多阈值级联AdaBoost行人检测器[J]. 交通运输工程学报, 2015, 15(2): 109-117. doi: 10.19818/j.cnki.1671-1637.2015.02.012
CUI Hua, ZHANG Xiao, GUO Lu, YUAN Chao, XUE Shi-jiao, SONG Huan-sheng. Cascade AdaBoost pedestrian detector with multi-features and multi-thresholds[J]. Journal of Traffic and Transportation Engineering, 2015, 15(2): 109-117. doi: 10.19818/j.cnki.1671-1637.2015.02.012
Citation: CUI Hua, ZHANG Xiao, GUO Lu, YUAN Chao, XUE Shi-jiao, SONG Huan-sheng. Cascade AdaBoost pedestrian detector with multi-features and multi-thresholds[J]. Journal of Traffic and Transportation Engineering, 2015, 15(2): 109-117. doi: 10.19818/j.cnki.1671-1637.2015.02.012

多特征多阈值级联AdaBoost行人检测器

doi: 10.19818/j.cnki.1671-1637.2015.02.012
基金项目: 

国家863计划项目 2012AA112312

详细信息
    作者简介:

    崔华(1977-), 女, 河南南阳人, 长安大学副教授, 工学博士, 从事交通图像识别研究

  • 中图分类号: U491.6

Cascade AdaBoost pedestrian detector with multi-features and multi-thresholds

More Information
    Author Bio:

    CUI Hua(1977-), female, associate professor, PhD, +86-29-62630027, huacui@chd.edu.cn

  • 摘要: 为了满足更快、更准、更鲁棒的行人检测需求, 考虑交通监控视频图像质量不高与局部特征不明显的缺点, 采用简单的行人特征来实现行人检测。除矩形度、高宽比、轮廓复杂度、宽度比、行人面积特征外, 特定选用了对遮挡等干扰具有强鲁棒性的头部圆形度这一简单的局部特征。考虑交通监控视频图像中行人的尺寸变化, 引入区域划分策略划分图像区域。兼顾高检测率和低误检率, 根据分类误差最小原则与正样本分类率最大原则训练多个单特征多阈值AdaBoost行人检测器。为了优化多个行人检测器级联后的检测性能, 在兼顾检测性能和检测速度的基础上, 定义了以贡献率作为行人检测器的级联规则, 依据贡献率大小确定的级联次序为基于高宽比、宽度比、矩形度、行人面积、轮廓复杂度和头部圆形度的行人检测器, 依次进行级联, 建立了新的多特征多阈值级联AdaBoost行人检测器。选用3个交通场景对行人检测器进行测试, 并与单级AdaBoost行人检测器与现有2种级联AdaBoost行人检测器进行比较。分析结果表明: 在3个交通场景的检测中, 相比其他几种行人检测器, 多特征多阈值级联AdaBoost行人检测器具有较高检测率、较快的检测速度和较低误检率, 检测率最低为96.70%, 误检率最高为0.67%, 检测时间小于5s, 满足交通场景中对行人检测实时性和可靠性的要求。

     

  • 图  1  行人头部区域提取过程

    Figure  1.  Extraction process of pedestrian head region

    图  2  图像区域划分

    Figure  2.  Image region separation

    图  3  级联检测器的结构

    Figure  3.  Structure of cascade detector

    图  4  多交通场景下的行人检测结果

    Figure  4.  Pedestrian detection results in various traffic scenes

    图  5  行人检测器检测结果

    Figure  5.  Detection results of pedestrian detectors

    表  1  行人检测器测试结果比较

    Table  1.   Test result comparison of pedestrian detectors

  • [1] 郭立君, 刘曦, 赵杰煜, 等. 结合运动信息与表观特征的行人检测方法[J]. 软件学报, 2012, 23(2): 299-309. https://www.cnki.com.cn/Article/CJFDTOTAL-RJXB201202012.htm

    GUO Li-jun, LIU Xi, ZHAO Jie-yu, et al. Pedestrian detection method of integrated motion information and appearance features[J]. Journal of Software, 2012, 23(2): 299-309. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-RJXB201202012.htm
    [2] NEGRI P, GOUSSIES N, LOTITO P. Detecting pedestrians on a movement feature space[J]. Pattern Recognition, 2014, 47(1): 56-71. doi: 10.1016/j.patcog.2013.05.020
    [3] DOLLÁR P, WOJEK C, SCHIELE B, et al. Pedestrian detection: an evaluation of the state of the art[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(4): 743-761. doi: 10.1109/TPAMI.2011.155
    [4] BORGES P V K. Pedestrian detection based on blob motion statistics[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2013, 23(2): 224-235. doi: 10.1109/TCSVT.2012.2203217
    [5] GAVRILA D M. A Bayesian, exemplar-based approach to hierarchical shape matching[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(8): 1408-1421. doi: 10.1109/TPAMI.2007.1062
    [6] PRIOLETTI A, MØGELMOSE A, GRISLERI P, et al. Part-based pedestrian detection and feature-based tracking for driver assistance: real-time, robust algorithms, and evaluation[J]. IEEE Transactions on Intelligent Transportation Systems, 2013, 14(3): 1346-1359. doi: 10.1109/TITS.2013.2262045
    [7] ENZWEILER M, GAVRILA D M. Monocular pedestrian detection: survey and experiments[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(12): 2179-2195.
    [8] VÁZQUEZ D, LÓPEZ A M, MARÍN J, et al. Virtual and real world adaptation for pedestrian detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(4): 797-809.
    [9] CAO Xian-bin, WANG Zhong, YAN Ping-kun, et al. Transfer learning for pedestrian detection[J]. Neurocomputing, 2013, 100: 51-57.
    [10] CHENG Wen-chang, JHAN D M. A self-constructing cascade classifier with AdaBoost and SVM for pedestrian detection[J]. Engineering Applications of Artificial Intelligence, 2013, 26(3): 1016-1028.
    [11] 汤义. 智能交通系统中基于视频的行人检测与跟踪方法的研究[D]. 广州: 华南理工大学, 2010.

    TANG Yi. Study on video-based detection and tracking method of pedestrian in ITS[D]. Guangzhou: South China University of Technology, 2010. (in Chinese).
    [12] DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[C]∥IEEE. Proceedings of the 2005IEEE Computer Society Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2005: 886-893.
    [13] 邵枭虎. 基于AdaBoost与显著信息的行人检测算法[D]. 成都: 电子科技大学, 2012.

    SHAO Xiao-hu. The algorithm of pedestrian detection based on AdaBoost and saliency information[D]. Chengdu: University of Electronic Science and Technology of China, 2012. (in Chinese).
    [14] MEYNET J, POPOVICI V, THIRAN J P. Face detection with boosted Gaussian features[J]. Pattern Recognition, 2007, 40(8): 2283-2291.
    [15] TIAN Hong, DUAN Zhu, ABRAHAM A, et al. A novel multiplex cascade classifier for pedestrian detection[J]. Pattern Recognition Letters, 2013, 34(14): 1687-1693.
    [16] 常峰, 杨彬, 窦建华. 基于多特征和级联分类器的行人检测算法[J]. 合肥工业大学学报: 自然科学版, 2014, 37(12): 1456-1461. https://www.cnki.com.cn/Article/CJFDTOTAL-HEFE201412010.htm

    CHANG Feng, YANG Bin, DOU Jian-hua. Pedestrian detection algorithm with multiple feature and cascade classifier[J]. Journal of Hefei University of Technology: Natural Science, 2014, 37(12): 1456-1461. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HEFE201412010.htm
    [17] 李梦涵, 熊淑华, 熊文, 等. 多尺度级联行人检测算法的研究与实现[J]. 计算机技术与发展, 2014, 24(8): 10-13. https://www.cnki.com.cn/Article/CJFDTOTAL-WJFZ201408003.htm

    LI Meng-han, XIONG Shu-hua, XIONG Wen, et al. Research and realization of pedestrian detection algorithm by multi-scale cascaded features[J]. Computer Technology and Development, 2014, 24(8): 10-13. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-WJFZ201408003.htm
    [18] 程如中, 赵勇, 王执中, 等. 实时行人检测预警系统[J]. 交通运输工程学报, 2012, 12(5): 110-118, 126. http://transport.chd.edu.cn/article/id/201205015

    CHENG Ru-zhong, ZHAO Yong, WONG Chup-chung, et al. Real-time pedestrian detecting and warning system[J]. Journal of Traffic and Transportation Engineering, 2012, 12(5): 110-118, 126. (in Chinese). http://transport.chd.edu.cn/article/id/201205015
    [19] FREUND Y, SCHAPIRE R E. A decision-theoretic generalization of on-line learning and an application to Boosting[J]. Journal of Computer and System Sciences, 1997, 55(1): 119-139.
    [20] SCHAPIRE R E, SINGER Y. Improved boosting algorithms using confidence-rated predictions[J]. Machine Learning, 1999, 37(3): 297-336.
    [21] GERÓNIMO D, LÓPEZ A M, SAPPA A D, et al. Survey of pedestrian detection for advanced driver assistance systems[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(7): 1239-1258.
    [22] DENG Jin-hao, ZHU Juan. Research on pedestrian detection algorithms based on video[C]∥IEEE. 2010IEEE Conference on Computer Design and Applications. New York: IEEE, 2010: 474-478.
    [23] LEE Y D, LI Z Z, ZHANG S R, et al. Safety impacts of red light running photo enforcement at urban signalized intersections[J]. Journal of Traffic and Transportation Engineering: English Edition, 2014, 1(5): 309-324.
    [24] LIU Qing-hua, CHUNG E, ZHAI Liu-jia. Fusing moving average model and stationary wavelet decomposition for automatic incident detection: case study of Tokyo expressway[J]. Journal of Traffic and Transportation Engineering: English Edition, 2014, 1(6): 404-414.
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  739
  • HTML全文浏览量:  153
  • PDF下载量:  901
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-11-13
  • 刊出日期:  2015-02-25

目录

    /

    返回文章
    返回