留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多模式弱分类器的AdaBoost-Bagging车辆检测算法

王海 蔡英凤 袁朝春

王海, 蔡英凤, 袁朝春. 基于多模式弱分类器的AdaBoost-Bagging车辆检测算法[J]. 交通运输工程学报, 2015, 15(2): 118-126. doi: 10.19818/j.cnki.1671-1637.2015.02.013
引用本文: 王海, 蔡英凤, 袁朝春. 基于多模式弱分类器的AdaBoost-Bagging车辆检测算法[J]. 交通运输工程学报, 2015, 15(2): 118-126. doi: 10.19818/j.cnki.1671-1637.2015.02.013
WANG Hai, CAI Ying-feng, YUAN Chao-chun. AdaBoost-Bagging vehicle detection algorithm based on multi-mode weak classifier[J]. Journal of Traffic and Transportation Engineering, 2015, 15(2): 118-126. doi: 10.19818/j.cnki.1671-1637.2015.02.013
Citation: WANG Hai, CAI Ying-feng, YUAN Chao-chun. AdaBoost-Bagging vehicle detection algorithm based on multi-mode weak classifier[J]. Journal of Traffic and Transportation Engineering, 2015, 15(2): 118-126. doi: 10.19818/j.cnki.1671-1637.2015.02.013

基于多模式弱分类器的AdaBoost-Bagging车辆检测算法

doi: 10.19818/j.cnki.1671-1637.2015.02.013
基金项目: 

国家自然科学基金项目 61403172

国家自然科学基金项目 51305167

国家自然科学基金项目 61203244

交通运输部科技项目 2013364836900

中国博士后科学基金项目 2014M561592

江苏省六大人才高峰项目 DZXX-040

江苏省自然科学基金项目 BK20140555

江苏省博士后科研计划项目 1402097C

江苏大学高级专业人才科研启动基金项目 12JDG010

江苏大学高级专业人才科研启动基金项目 14JDG028

详细信息
    作者简介:

    王海(1983-), 男, 江苏镇江人, 江苏大学讲师, 工学博士, 从事基于视觉的智能车道路环境感知研究

  • 中图分类号: U491.116

AdaBoost-Bagging vehicle detection algorithm based on multi-mode weak classifier

More Information
  • 摘要: 针对现有车辆检测算法在实际复杂道路情况下对车辆有效检测率不高的问题, 提出了融合多模式弱分类器, 并以AdaBoost-Bagging集成为强分类器的车辆检测算法。结合判别式模型善于利用较多的特征形成较好决策边界和生成式模型善于利用较少的特征排除大量负样本的优点, 以Haar特征训练判别式弱分类器, 以HOG特征训练生成式弱分类器, 以AdaBoost算法为桥梁, 采用泛化能力强的Bagging学习器集成算法得到AdaBoost-Bagging强分类器, 利用Caltech1999数据库和实际道路图像对检测算法进行了验证。验证结果表明: 相比于单模式弱分类器, AdaBoostBagging强分类器在分类能力和处理时间上均具有优越性, 表现为较高的检测率与较低的误检率, 分别为95.7%、0.000 27%, 每帧图像的检测时间较少, 为25ms; 与传统级联AdaBoost分类器相比, AdaBoost-Bagging强分类器虽然增加了12%的检测时间和30%的训练时间, 但检测率提升了1.8%, 误检率降低了0.000 06%;本文算法的检测性能显著优于基于Haar特征的AdaBoost分类器算法、基于HOG特征的SVM分类器算法、基于HOG特征的DPM分类器算法, 具有较佳的车辆检测效果。

     

  • 图  1  矩形Haar特征

    Figure  1.  Rectangular Haar features

    图  2  车辆图像的双矩形Haar特征

    Figure  2.  Two rectangular Haar features of vehicle image

    图  3  矩形区域HOG特征

    Figure  3.  HOG feature of rectangular region

    图  4  判别式模型和生成式模型

    Figure  4.  Discriminative model and generative model

    图  5  基于弱分类器融合的Bagging强分类器

    Figure  5.  Bagging strong classifier fused with weak classifiers

    图  6  AdaBoost-Bagging算法检测过程

    Figure  6.  Process of AdaBoost-Bagging algorithm

    图  7  正负样本

    Figure  7.  Positive and negative samples

    图  8  实际检测结果

    Figure  8.  Real detection results

    表  1  试验1结果

    Table  1.   Result of test 1

    表  2  试验2结果

    Table  2.   Result of test 2

    表  3  试验3结果

    Table  3.   Result of test 3

  • [1] YOO H, YANG U, SOHN K. Gradient-enhancing conversion for illumination-robust lane detection[J]. IEEE Transactions on Intelligent Transportation Systems, 2013, 14(3): 1083-1094. doi: 10.1109/TITS.2013.2252427
    [2] PEDERSOLI M, GONZÀLEZ J, HU X, et al. Toward real-time pedestrian detection based on a deformable template model[J]. IEEE Transactions on Intelligent Transportation Systems, 2014, 15(1): 355-364. doi: 10.1109/TITS.2013.2281207
    [3] LIU Qing-hua, CHUNG E, ZHAI Liu-jia. Fusing moving average model and stationary wavelet decomposition for automatic incident detection: case study of Tokyo expressway[J]. Journal of Traffic and Transportation Engineering: English Edition, 2014, 1(6): 404-414. doi: 10.1016/S2095-7564(15)30290-7
    [4] VÁZQUEZ D, LÓPEZ A M, MARÍN J, et al. Virtual and real world adaptation for pedestrian detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(4): 797-809. doi: 10.1109/TPAMI.2013.163
    [5] 马雷, 臧俊杰, 张润生. 不同光照条件下前方车辆识别方法[J]. 汽车工程, 2012, 34(4): 360-366, 332. doi: 10.3969/j.issn.1000-680X.2012.04.017

    MA Lei, ZANG Jun-jie, ZHANG Run-sheng. Front vehicle identification under different lighting conditions[J]. Automotive Engineering, 2012, 34(4): 360-366, 332. (in Chinese). doi: 10.3969/j.issn.1000-680X.2012.04.017
    [6] SHAW A A, GOPALAN N P. Finding frequent trajectories by clustering and sequential pattern mining[J]. Journal of Traffic and Transportation Engineering: English Edition, 2014, 1(6): 393-403. doi: 10.1016/S2095-7564(15)30289-0
    [7] 许庆, 高峰, 徐国艳. 基于Haar特征的前车识别算法[J]. 汽车工程, 2013, 35(4): 381-384. doi: 10.3969/j.issn.1000-680X.2013.04.018

    XU Qing, GAO Feng, XU Guo-yan. An algorithm for frontvehicle detection based on Haar-like feature[J]. Automotive Engineering, 2013, 35(4): 381-384. (in Chinese). doi: 10.3969/j.issn.1000-680X.2013.04.018
    [8] HSIEH J W, CHEN L C, CHEN D Y. Symmetrical SURF and its applications to vehicle detection and vehicle make and model recognition[J]. IEEE Transactions on Intelligent Transportation Systems, 2014, 15(1): 6-20. doi: 10.1109/TITS.2013.2294646
    [9] CHEON M, LEE W, YOON C, et al. Vision-based vehicle detection system with consideration of the detecting location[J]. IEEE Transactions on Intelligent Transportation Systems, 2012, 13(3): 1243-1252. doi: 10.1109/TITS.2012.2188630
    [10] SUN Z, BEBIS G, MILLER R. On-road vehicle detection: a review[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(5): 694-711. doi: 10.1109/TPAMI.2006.104
    [11] VIOLA P, JONES M. Robust real-time face detection[J]. International Journal of Computer Vision, 2004, 57(2): 137-154. doi: 10.1023/B:VISI.0000013087.49260.fb
    [12] VIOLA P, JONES M. Rapid object detection using a boosted cascade of simple features[C]∥IEEE. Proceedings of the2001IEEE Computer Society Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2001: 511-518.
    [13] SUN Z, BEBIS G, MILLER R. Monocular precrash vehicle detection: features and classifiers[J]. IEEE Transactions on Image Processing, 2006, 15(7): 2019-2034. doi: 10.1109/TIP.2006.877062
    [14] PONSA D, LOPEZ A. Cascade of classifiers for vehicle detection[C]∥BLANC-TALON J, PHILIPS W, POPESCU D, et al. Proceedings of the 9th International Conference on Advanced Concepts for Intelligent Vision Systems. Heidelberg: Springer, 2007: 980-989.
    [15] WITHOPF D, JÄHNE B. Improved training algorithm for tree-like classifiers and its application to vehicle detection[C]∥IEEE. Proceedings of the 2007IEEE Intelligent Transportation Systems Conference. New York: IEEE, 2007: 642-647.
    [16] KAÂNICHE M B, BRÉMOND F. Recognizing gestures by learning local motion signatures of HOG descriptors[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(11): 2247-2258. doi: 10.1109/TPAMI.2012.19
    [17] MORANDUZZO T, MELGANI F. A SIFT-SVM method for detecting cars in UAV images[C]∥IEEE. 2012IEEE International Geoscience and Remote Sensing Symposium. New York: IEEE, 2012: 6868-6871.
    [18] 孙锐, 陈军, 高隽. 基于显著性检测与HOG-NMF特征的快速行人检测方法[J]. 电子与信息学报, 2013, 35(8): 1921-1926. https://www.cnki.com.cn/Article/CJFDTOTAL-DZYX201308023.htm

    SUN Rui, CHEN Jun, GAO Jun. Fast pedestrian detection based on saliency detection and HOG-NMF features[J]. Journal of Electronics and Information Technology, 2013, 35(8): 1921-1926. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DZYX201308023.htm
    [19] 蔡益红. 多特征融合的道路车辆检测方法[J]. 计算技术与自动化, 2013, 32(1): 98-102. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJH201301024.htm

    CAI Yi-hong. Fusing multiple features to detect on-road vehicles[J]. Computing Technology and Automation, 2013, 32(1): 98-102. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSJH201301024.htm
    [20] GEISMANN P, SCHNEIDER G. A two-staged approach to vision-based pedestrian recognition using Haar and HOG features[C]∥IEEE. 2008IEEE Intelligent Vehicles Symposium. New York: IEEE, 2008: 554-559.
    [21] PORIKLI F. Integral histogram: a fast way to extract histograms in Cartesian spaces[C]∥IEEE. Proceedings of the2005IEEE Computer Society Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2005: 829-836.
    [22] JU Yu-cui, ZHANG Hua, XUE Yan-bing. Research of feature selection and comparison in AdaBoost based object detection system[J]. Journal of Computational Information Systems, 2013, 9(22): 8947-8954.
    [23] CHANG W C, CHO C W. Online boosting for vehicle detection[J]. IEEE Transactions on Systems, Man, and Cybernetics Part B: Cybernetics, 2010, 40(3): 892-902. doi: 10.1109/TSMCB.2009.2032527
    [24] YUAN Q, THANGALI A, ABLAVSKY V, et al. Learning a family of detectors via multiplicative kernels[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(3): 514-530. doi: 10.1109/TPAMI.2010.117
    [25] NIKNEJAD H T, TAKEUCHI A, MITA S, et al. On-road multivehicle tracking using deformable object model and particle filter with improved likelihood estimation[J]. IEEE Transactions on Intelligent Transportation Systems, 2012, 13(2): 748-758.
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  619
  • HTML全文浏览量:  76
  • PDF下载量:  1084
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-10-10
  • 刊出日期:  2015-02-25

目录

    /

    返回文章
    返回