Influence of intermediate principal stress coefficient on character of soft clay under rotation of principal stress axes
-
摘要: 采用空心圆柱仪对上海原状软黏土进行了不排水剪切试验, 研究了主应力轴旋转条件下中主应力系数对饱和软黏土变形与强度特性的影响。采用等压固结模式对软黏土空心薄壁试样进行固结, 并在3种不同主应力轴旋转角度下, 对试样进行不同中主应力系数的不排水剪切试验。试验前提为剪切过程中平均应力、中主应力系数与主应力轴旋转角度均保持不变, 而偏应力逐渐增大, 直至试样破坏。试验结果表明: 在不同中主应力系数下, 天然软黏土的变形与强度特征存在明显的差异, 在3种主应力轴旋转角度下, 随着中主应力系数的增加, 临界应力比均呈降低趋势, 相应的峰值剪切强度减小; 在主应力轴旋转角度为0°时, 中主应力系数为0.25和0.50的试样均出现了轻微的应变局部化现象, 剪应力在达到峰值后呈逐渐降低的趋势; 在主应力轴旋转角度为90°时, 中主应力系数为0.50和0.75的试样所对应的状态为内外压不等的非轴对称拉伸状态, 二者的峰值剪切强度比较接近, 而中主应力系数为1.00的试样对应的为内外压相等的轴对称拉伸状态, 其峰值剪切强度相比前二者降低了25%;在内外压相等的加载条件下, 主应力轴旋转角度由0°增加为90°的同时, 中主应力系数由0增加为1.00, 试样破坏时对应的临界应力比与不排水剪切强度均逐渐降低。Abstract: A series of undrained shear tests were carried out on Shanghai undisturbed soft clay by using hollow cylinder apparatus.Under the rotation of principal stress axes, the influence of intermediate principal stress coefficient on the deformation and strength character of saturated soft clay was researched.The hollow thin-walled samples of soft clay were consolidated under isotropic consolidation modes.Under 3 kinds of rotation angles of principal stress axes, a series of undrained shear tests were carried out with different intermediate principal stress coefficients.During the shear tests, the deviator stress increased until the sample was destroyed, while average stress, intermediate principal stress coefficient and the rotation angle of principal stress axes remained unchanged.Test result indicates that the deformation behavior and strength character of natural soft clay were obviously different under different intermediate principal stress coefficients.The critical stress ratio and undrained shear strength decrease with the increase of intermediate principal stress coefficient under the three kinds of rotation angles of principal stress axes.When the rotation angle of principal stress axes is 0°, the shear stresses of samples with the intermediate principal stress coefficients of 0.25 and 0.50 decrease after arriving the peak values because of slight strain localization.When the rotation angle of principal stress axes is 90°, and intermediate principal stress coefficients are 0.50 and 0.75, the peak values of shear strength are similar, and the sample states are non-axisymmetrical tensile with unequal inner and outer pressure.Moreover, when the intermediate principal stress coefficient is 1.00, comparing with the coefficients of 0.50 and 0.75, the peak shear strength decreases by 25%, and the sample states are axisymmetrical tensile with equal inner and outer pressure.If the equal internal and external pressures are applied, when the rotation angle of principal stress axes increase from 0° to 90°, the intermediate principal stress coefficient increase from 0 to 1.00, and the critical stress ratio of samples and undrained shear strength decrease.
-
表 1 测试软黏土的基本物理特性
Table 1. Basic physical properties of tested soft clay
表 2 试验方案
Table 2. Test schemes
-
[1] ZDRAVKOVIĆ L, POTTS D M, HIGHT D W. The effect of strength anisotropy on the behaviour of embankments on soft ground[J]. Géotechnique, 2002, 52(6): 447-457. doi: 10.1680/geot.2002.52.6.447 [2] 沈扬, 周建, 张金良, 等. 主应力轴循环旋转下原状软黏土临界性状研究[J]. 浙江大学学报: 工学版, 2008, 42(1): 77-82. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC200801016.htmSHEN Yang, ZHOU Jian, ZHANG Jin-liang, et al. Critical properties of intact soft clay under cyclic principal stress rotation[J]. Journal of Zhejiang University: Engineering Science, 2008, 42(1): 77-82. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC200801016.htm [3] 孙红, 袁聚云, 赵锡宏. 软土的真三轴试验研究[J]. 水利学报, 2002(12): 74-78. doi: 10.3321/j.issn:0559-9350.2002.12.014SUN Hong, YUAN Ju-yun, ZHAO Xi-hong. Study on soft soil by the true triaxial tests [J]. Journal of Hydraulic Engineering, 2002(12): 74-78. (in Chinese) doi: 10.3321/j.issn:0559-9350.2002.12.014 [4] HIGHT D W, GENS A, SYMES M J. The development of a new hollow cylinder apparatus for investigating the effects of principal stress rotation in soils[J]. Géotechnique, 1983, 33(4): 355-383. doi: 10.1680/geot.1983.33.4.355 [5] 沈瑞福, 王洪瑾, 周景星. 动主应力轴连续旋转下砂土的动强度[J]. 水利学报, 1996(1): 27-33. doi: 10.3321/j.issn:0559-9350.1996.01.005SHEN Rui-fu, WANG Hong-jin, ZHOU Jing-xing. Dynamic strength of sand under cyclic rotation of principal stress directions[J]. Journal of Hydraulic Engineering, 1996(1): 27-33. (in Chinese) doi: 10.3321/j.issn:0559-9350.1996.01.005 [6] HONG W P, LADE P V. Strain increment and stress directions in torsion shear tests[J]. Journal of Geotechnical Engineering, 1989, 115(10): 1388-1401. doi: 10.1061/(ASCE)0733-9410(1989)115:10(1388) [7] LIN H, PENUMADU D. Experimental investigation on principal stress rotation in Kaolin clay[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(5): 633-642. doi: 10.1061/(ASCE)1090-0241(2005)131:5(633) [8] KANDASAMI R K, MURTHY T G. Experimental studies on the influence of intermediate principal stress and inclination on the mechanical behaviour of angular sands[J]. Granular Matter, 2015, 17(2): 217-230. doi: 10.1007/s10035-015-0554-4 [9] ZDRAVKOVIĆ L, JARDINE R J. The effect on anisotropy of rotating the principal stress axes during consolidation[J]. Géotechnique, 2001, 51(1): 69-83. doi: 10.1680/geot.2001.51.1.69 [10] ZDRAVKOVIĆ L, JARDINE R J. Undrained anisotropy of K0-consolidated silt[J]. Canadian Geotechnique, 2000, 37(1): 178-200. doi: 10.1139/t99-094 [11] ZDRAVKOVIĆ L, JARDINE R J. Some anisotropic stiffness characteristics of a silt under general stress conditions[J]. Géotechnique, 1997, 47(3): 407-437. doi: 10.1680/geot.1997.47.3.407 [12] MINH N A. An investigation of the anisotropic stress-strain-strength characteristics of Eocene clay[D]. London: Imperial College London, 2006. [13] NISHIMURA S, MINH N A, JARDINE R J. Shear strength anisotropy of natural London clay[J]. Géotechnique, 2007, 57(1): 49-62. doi: 10.1680/geot.2007.57.1.49 [14] 聂影, 栾茂田, 王猛, 等. 主应力轴旋转下饱和黏土动力特性的试验研究[J]. 辽宁工程技术大学学报: 自然科学版, 2009, 28(4): 562-565. doi: 10.3969/j.issn.1008-0562.2009.04.013NIE Ying, LUAN Mao-tian, WANG Meng, et al. Experimental study on dynamic characteristics of saturated clay under cyclic rotation of principal stress directions[J]. Journal of Liaoning Technical University: Natural Science, 2009, 28(4): 562-565. (in Chinese) doi: 10.3969/j.issn.1008-0562.2009.04.013 [15] 沈扬, 周建, 张金良, 等. 考虑主应力方向变化的原状黏土强度及超静孔压特性研究[J]. 岩土工程学报, 2007, 29(6): 843-847. doi: 10.3321/j.issn:1000-4548.2007.06.009SHEN Yang, ZHOU Jian, ZHANG Jin-liang, et al. Research on strength and pore pressure of intact clay considering variation of principal stress direction[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(6): 843-847. (in Chinese) doi: 10.3321/j.issn:1000-4548.2007.06.009 [16] 沈扬, 周建, 龚晓南, 等. 考虑主应力方向变化的原状软黏土应力应变性状试验研究[J]. 岩土力学, 2009, 30(12): 3720-3726. doi: 10.3969/j.issn.1000-7598.2009.12.028SHEN Yang, ZHOU Jian, GONG Xiao-nan, et al. Experimental study of stress-strain properties of intact soft clay considering the change of principal stress direction[J]. Rock and Soil Mechanics, 2009, 30(12): 3720-3726. (in Chinese) doi: 10.3969/j.issn.1000-7598.2009.12.028 [17] 管林波, 周建, 张勋, 等. 中主应力系数和主应力方向对原状黏土各向异性的影响研究[J]. 岩石力学与工程学报, 2010, 29(增2): 3871-3877. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2010S2062.htmGUAN Lin-bo, ZHOU Jian, ZHANG Xun, et al. Study of influence of parameters of intermediate principal stress and principal strss direction on anisotropy of intact clay[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(S2): 3871-3877. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2010S2062.htm [18] 严佳佳, 周建, 刘正义, 等. 主应力轴纯旋转条件下黏土弹塑性变形特性[J]. 岩石力学与工程学报, 2014, 33(增2): 4350-4358. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2014S2121.htmYAN Jia-jia, ZHOU Jian, LIU Zheng-yi, et al. Elasto-plastic deformation behavior of intact clay subjected to principal stress rotation[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(S2): 4350-4358. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2014S2121.htm [19] 周建, 郑鸿镔, 温晓贵, 等. 考虑中主应力系数影响的主应力轴旋转下原状软黏土变形研究[J]. 浙江大学学报: 工学版, 2011, 45(12): 2134-2141. doi: 10.3785/j.issn.1008-973X.2011.12.011ZHOU Jian, ZHENG Hong-bin, WEN Xiao-gui, et al. Deformation of intact soft clay under principal stress rotation with effect of intermediate principal stress[J]. Journal of Zhejiang University: Engineering Science, 2011, 45(12): 2134-2141. (in Chinese) doi: 10.3785/j.issn.1008-973X.2011.12.011 [20] SYMES M J, GENS A, HIGHT D W. Drained principal stress rotation in saturated sand[J]. Géotechnique, 1988, 38(1): 59-81. doi: 10.1680/geot.1988.38.1.59