留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

切削式吸能的惯性效应

刘国伟 夏茜 王千叶 董茹玲

刘国伟, 夏茜, 王千叶, 董茹玲. 切削式吸能的惯性效应[J]. 交通运输工程学报, 2015, 15(3): 62-70. doi: 10.19818/j.cnki.1671-1637.2015.03.008
引用本文: 刘国伟, 夏茜, 王千叶, 董茹玲. 切削式吸能的惯性效应[J]. 交通运输工程学报, 2015, 15(3): 62-70. doi: 10.19818/j.cnki.1671-1637.2015.03.008
LIU Guo-wei, XIA Qian, WANG Qian-ye, DONG Ru-ling. Inertia effects of cutting energy absorption[J]. Journal of Traffic and Transportation Engineering, 2015, 15(3): 62-70. doi: 10.19818/j.cnki.1671-1637.2015.03.008
Citation: LIU Guo-wei, XIA Qian, WANG Qian-ye, DONG Ru-ling. Inertia effects of cutting energy absorption[J]. Journal of Traffic and Transportation Engineering, 2015, 15(3): 62-70. doi: 10.19818/j.cnki.1671-1637.2015.03.008

切削式吸能的惯性效应

doi: 10.19818/j.cnki.1671-1637.2015.03.008
基金项目: 

国家自然科学基金项目 51275532

国家自然科学基金项目 U1334208

详细信息
    作者简介:

    刘国伟(1955-), 男, 湖南长沙人, 中南大学教授, 从事轨道车辆结构研究

  • 中图分类号: U270.1

Inertia effects of cutting energy absorption

More Information
  • 摘要: 在考虑切削热影响的基础上, 采用数值模拟研究了切削式吸能过程的惯性效应, 计算了不同初始撞击条件下的稳定切削力、切削位移、最高温度、热耗散能量和热耗散能量比例。计算结果表明: 初始撞击能量为20 kJ时, 切屑生成时切削力未出现明显的初始峰值, 稳定切削力变化范围为63.0~63.8 kN, 变化规律相同, 变化趋势一致; 撞击质量为200 kg, 撞击速度变化范围为3~10 m·s-1时, 稳定切削力变化范围为63.0~64.4 kN; 撞击速度为10 m·s-1, 撞击质量由0.4 t增加至3.2 t时, 热耗散能量由4.12 kJ增加到36.64 kJ, 热耗散能量随撞击质量的增大而增大, 最高温度变化范围为586℃602℃, 热耗散能量比例变化范围为20.6%~23.2%, 稳定切削力的变化范围为63.0~64.1 kN。可见, 在切削深度和刀具几何参数不变的条件下, 初始撞击能量、撞击质量和撞击速度对切削力影响很小, 切削式吸能过程的惯性敏感性弱, 切削式吸能结构属于第Ⅰ类, 而且, 切削热占能量耗散比例大, 撞击速度对其影响程度大。

     

  • 图  1  切削式吸能过程

    Figure  1.  Cutting energy-absorbing process

    图  2  网格模型

    Figure  2.  Mesh model

    图  3  初始动能恒定时的稳定切削力

    Figure  3.  Stable cutting force based on constant initial kinetic energy

    图  4  初始动能恒定时的切削位移

    Figure  4.  Cutting displacement based on constant initial kinetic energy

    图  5  初始动能恒定时的最高温度

    Figure  5.  Maximum temperature based on constantinitial kinetic energy

    图  6  初始动能恒定时的热耗散能量

    Figure  6.  Thermal dissipation energy based onconstant initial kinetic energy

    图  7  初始动能恒定时的热耗散能量比例

    Figure  7.  Percentage of thermal dissipation energy based onconstant initial kinetic energy

    图  8  定初始动能时的切削力曲线

    Figure  8.  Cutting force curves based on constant initial kinetic energy

    图  9  初始动能变化时的稳定切削力

    Figure  9.  Stable cutting force based on changinginitial kinetic energy

    图  11  初始动能变化时的最高温度

    Figure  11.  Maximum temperature based on changinginitial kinetic energy

    图  10  初始动能变化时的切削位移

    Figure  10.  Cutting displacement based on changinginitial kinetic energy

    图  12  初始动能变化时的热耗散能量

    Figure  12.  Thermal dissipation energy based onchanging initial kinetic energy

    图  13  初始动能变化时的热耗散能量比例

    Figure  13.  Percentage of thermal dissipation energybased on changing initial kinetic energy

    图  14  撞击速度不变时的稳定切削力

    Figure  14.  Stable cutting force based onconstant impact speed

    图  15  撞击速度不变时的切削位移

    Figure  15.  Cutting displacement based onconstant impact speed

    图  16  撞击速度不变时的最高温度

    Figure  16.  Maximum temperature based onconstant impact speed

    图  17  撞击速度不变时的热耗散能量

    Figure  17.  Thermal dissipation energy based onconstant impact speed

    图  18  撞击速度不变时的热耗散能量比例

    Figure  18.  Percentage of thermal dissipation energybased on constant impact speed

    图  19  切削式吸能装置

    Figure  19.  Cutting energy-absorbing device

    图  20  切削力曲线

    Figure  20.  Cutting force curve

    图  21  动能曲线

    Figure  21.  Kinetic energy curve

    表  1  材料参数

    Table  1.   Material parameters

    表  2  初始动能不变时的组合工况

    Table  2.   Combined conditions based on constantinitial kinetic energy

    表  3  初始动能变化时的组合工况

    Table  3.   Combined conditions based on changinginitial kinetic energy

    表  4  撞击质量不同时的组合工况

    Table  4.   Combined conditions based on changing impact mass

  • [1] 王庆艳. 铝型材地铁车车体耐撞性分析及吸能结构最优设计[D]. 大连: 大连交通大学, 2007.

    WANG Qing-yan. The crashworthiness and optimization of the aluminum subway vehicles[D]. Dalian: Dalian Jiaotong University, 2007. (in Chinese).
    [2] WIERZBICKI T. Crushing analysis of metal honeycombs[J]. International Journal of Impact Engineering, 1983, 1(2): 157-174. doi: 10.1016/0734-743X(83)90004-0
    [3] 伞军民. 列车吸能结构碰撞仿真与分析[D]. 大连: 大连交通大学, 2009.

    SAN Jun-min. The crash simulation and analysis of the train's energy-absorbing structure[D]. Dalian: Dalian Jiaotong University, 2009. (in Chinese).
    [4] 罗玗琪. B型地铁车辆间鼓胀与诱导组合式吸能结构碰撞性能研究[D]. 长沙: 中南大学, 2011.

    LUO Yu-qi. Research on crashworthiness of both bulgy type and guide combined type energy-absorbing structures between B-type subway vehicles[D]. Changsha: Central South University, 2011. (in Chinese).
    [5] CALLADINE C R, ENGLISH R W. Strain-rate and inertia effects in the collapse of two types of energy-absorbing structure[J]. International Journal of Mechanical Sciences, 1984, 26(11/12): 689-701.
    [6] 卢文浩, 鲍荣浩. 动态冲击下能量吸收结构的惯性敏感性的数值模拟分析[J]. 振动与冲击, 2004, 23(3): 67-69. doi: 10.3969/j.issn.1000-3835.2004.03.018

    LU Wen-hao, BAO Rong-hao. Numerical simulation study on the inertia-sensitiveness of energy-absorbing structures under impact loading[J]. Journal of Vibration and Shock, 2004, 23(3): 67-69. (in Chinese). doi: 10.3969/j.issn.1000-3835.2004.03.018
    [7] EJI U, KATSUHIRO M, TAKAHIRO S. Simulation analysis of built-up edge formation in machining of low carbon steel[J]. Bulletin of the Japan Society Precision Engineering, 1981, 15(4): 237-242.
    [8] STRENKOWASKI J S, CARROLL J T. A finite element model of orthogonal metal cutting[J]. Journal of Engineering for Industry, 1985, 107(4): 349-354. doi: 10.1115/1.3186008
    [9] STRENKOWASKI J S, MOON K J. Finite element prediction of chip geometry and tool/workpiece temperature distribution in orthogonal metal cutting[J]. Journal of Manufacturing Science and Engineering, 1990, 112(3): 313-318.
    [10] SHIH A J. Finite element simulation of orthogonal metal cutting[J]. Journal of Engineering for Industry, 1995, 117(2): 84-93.
    [11] HUANG J M, BLACK J T. An evaluation of chip separation criteria for the FEM simulation of machining[J]. Journal of Manufacturing Science and Engineering, 1996, 118(4): 545-554. doi: 10.1115/1.2831066
    [12] SMITH A J R, ARMAREGO E J A. Temperature prediction in orthogonal cutting with a finite difference approach[J]. CIRP Annals-Manufacturing Technology, 1981, 30(1): 9-13. doi: 10.1016/S0007-8506(07)60886-5
    [13] CHILDS T H C. Ductile shear failure damage modelling and predicting built-up edge in steel machining[J]. Journal of Materials Processing Technology, 2013, 213(11): 1954-1969. doi: 10.1016/j.jmatprotec.2013.05.017
    [14] CHILDS T H C. Developments in simulating built up edge formation in steel machining[C]∥WRHRNER K. Fifth CIRP Conference on High Performance Cutting. Amsterdam: Elsevier, 2012: 78-83.
    [15] CHILDS T H C. Towards simulating built-up-edge formation in the machining of steel[J]. CIRP Journal of Manufacturing Science and Technology, 2011, 4(1): 57-70. doi: 10.1016/j.cirpj.2011.07.002
    [16] HAJMOHAMMADI M S, MOVAHHEDY M R, MORADI H. Investigation of thermal effects on machining chatter based on FEM simulation of chip formation[J]. CIRP Journal of Manufacturing Science and Technology, 2014, 7(1): 1-10. doi: 10.1016/j.cirpj.2013.11.001
    [17] 常宁. 切削式吸能过程仿真研究[D]. 长沙: 中南大学, 2009.

    CHANG Ning. Simulation for energy-absorbing process in metal-cutting way[D]. Changsha: Central South University, 2009. (in Chinese).
    [18] 汤礼鹏. 城轨车辆切削式专用吸能装置研究[D]. 长沙: 中南大学, 2010.

    TANG Li-peng. Research on the special energy-absorbing structure of mass transit vehicle[D]. Changsha: Central South University, 2010. (in Chinese).
    [19] 雷成, 肖守讷, 罗世辉. 轨道车辆切削式吸能装置吸能特性研究[J]. 中国机械工程, 2013, 24(2): 263-267. doi: 10.3969/j.issn.1004-132X.2013.02.022

    LEI Cheng, XIAO Shou-ne, LUO Shi-hui. Research on energy absorption characteristics of rail vehicle energy-absorbing component in cutting way[J]. China Mechanical Engineering, 2013, 24(2): 263-267. (in Chinese). doi: 10.3969/j.issn.1004-132X.2013.02.022
    [20] 雷成, 肖守讷, 罗世辉. 基于显式有限元的高速列车吸能装置吸能原理研究[J]. 铁道机车车辆, 2012, 32(2): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJC201202000.htm

    LEI Cheng, XIAO Shou-ne, LUO Shi-hui. Research on the energy-absorbing theory of high speed train energy-absorbing component based on the explicit finite element[J]. Railway Locomotive and Car, 2012, 32(2): 1-5. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDJC201202000.htm
    [21] 雷成, 肖守讷, 罗世辉. 轨道车辆新型车端专用吸能装置[J]. 西南交通大学学报, 2013, 48(4): 738-744. doi: 10.3969/j.issn.0258-2724.2013.04.022

    LEI Cheng, XIAO Shou-ne, LUO Shi-hui. New special energyabsorbing component at vehicle end of rail vehicles[J]. Journal of Southwest Jiaotong University, 2013, 48(4): 738-744. (in Chinese). doi: 10.3969/j.issn.0258-2724.2013.04.022
    [22] 岳伟玲, 王喜顺, 罗昌杰, 等. 圆孔拉刀式吸能器吸能特性的研究[J]. 机械设计与制造, 2014(7): 27-30. doi: 10.3969/j.issn.1001-3997.2014.07.008

    YUE Wei-ling, WANG Xi-shun, LUO Chang-jie, et al. Round broaching energy absorption characteristics of energyabsorbing device[J]. Machinery Design and Manufacture, 2014(7): 27-30. (in Chinese). doi: 10.3969/j.issn.1001-3997.2014.07.008
    [23] SINGACE A A, ELSOBKY H, REDDY T Y. On the eccentricity factor in the progressive crushing of tubes[J]. Interational Journal of Solids and Structures, 1995, 32(24): 3589-3602. doi: 10.1016/0020-7683(95)00020-B
    [24] SCHOKKER A, SRIDHARAN S, KASAGI A. Dynamic buckling of composite shells[J]. Computers and Structures, 1996, 59(1): 43-53. doi: 10.1016/0045-7949(95)00244-8
    [25] SCHAUER D A, HOOVER C G, KAY G J, et al. Crashworthiness simulations with DYNA3D[J]. Transportation Research Record, 1996(1528): 124-129.
    [26] RAMESH M V, SEETHARAMU K N, GANESAN N, et al. Finite element modelling of heat transfer analysis in machining of isotropic materials[J]. International Journal of Heat and Mass Transfer, 1999, 42(9): 1569-1583. doi: 10.1016/S0017-9310(98)00259-2
    [27] 牟金磊, 朱锡, 黄晓明, 等. 水下爆炸气泡载荷在加筋板塑性变形中的作用[J]. 振动与冲击, 2010, 29(5): 74-77, 241. doi: 10.3969/j.issn.1000-3835.2010.05.016

    MOU Jin-lei, ZHU Xi, HUANG Xiao-ming, et al. Effect of underwater explosion bubble on plastic displacement of stiffened plates[J]. Journal of Vibration and Shock, 2010, 29(5): 74-77, 241. (in Chinese). doi: 10.3969/j.issn.1000-3835.2010.05.016
  • 加载中
图(21) / 表(4)
计量
  • 文章访问数:  953
  • HTML全文浏览量:  142
  • PDF下载量:  1047
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-12-23
  • 刊出日期:  2015-06-25

目录

    /

    返回文章
    返回