-
摘要: 在考虑切削热影响的基础上, 采用数值模拟研究了切削式吸能过程的惯性效应, 计算了不同初始撞击条件下的稳定切削力、切削位移、最高温度、热耗散能量和热耗散能量比例。计算结果表明: 初始撞击能量为20 kJ时, 切屑生成时切削力未出现明显的初始峰值, 稳定切削力变化范围为63.0~63.8 kN, 变化规律相同, 变化趋势一致; 撞击质量为200 kg, 撞击速度变化范围为3~10 m·s-1时, 稳定切削力变化范围为63.0~64.4 kN; 撞击速度为10 m·s-1, 撞击质量由0.4 t增加至3.2 t时, 热耗散能量由4.12 kJ增加到36.64 kJ, 热耗散能量随撞击质量的增大而增大, 最高温度变化范围为586℃602℃, 热耗散能量比例变化范围为20.6%~23.2%, 稳定切削力的变化范围为63.0~64.1 kN。可见, 在切削深度和刀具几何参数不变的条件下, 初始撞击能量、撞击质量和撞击速度对切削力影响很小, 切削式吸能过程的惯性敏感性弱, 切削式吸能结构属于第Ⅰ类, 而且, 切削热占能量耗散比例大, 撞击速度对其影响程度大。Abstract: Based on considering the influence of cutting heat, the inertia effects of cutting energy absorption were studied by numerical simulation, and stable cutting force, cutting displacement, maximum temperature, heat dissipative energy and the dissipative proportion of thermal energy were computed under different initial impact conditions.Computation result shows when the initial impact energy is 20 kJ and there are no distinct initial cutting force peaks in chip formation, the stable cutting force ranges from 63.0 kN to 63.8 kN, and the changing rules and trends of cutting force curves are approximately same.When the impact mass is 200 kg and the impact velocity changes from 3 m·s-1 to 10 m·s-1, the stable cutting force ranges from 63.0 kN to 64.4 k N.When the impact velocity is 10 m·s-1 and the impact mass changes from 0.4 t to 3.2 t, the heat dissipative energy increases from 4.12 kJ to 36.64 kJ, the maximum temperature changes between 586 ℃ and 602 ℃, the dissipative proportion of thermal energy ranges from 20.6% to 23.2%, and the stable force ranges from 63.0 kN to 64.1 kN. Obviously, when the cutting depth and the geometrical parameters of cutting tool are defined, the initial impact energy, impact mass and impact velocity have little effect on the cutting force, the inertia effects of cutting energy-absorbing process are insensitive, and the cutting energy-absorbing structure belongs to type Ⅰ.The cutting heat accounts for a large proportion of energy dissipation and is greatly influenced by the initial impact velocity.
-
表 1 材料参数
Table 1. Material parameters
表 2 初始动能不变时的组合工况
Table 2. Combined conditions based on constantinitial kinetic energy
表 3 初始动能变化时的组合工况
Table 3. Combined conditions based on changinginitial kinetic energy
表 4 撞击质量不同时的组合工况
Table 4. Combined conditions based on changing impact mass
-
[1] 王庆艳. 铝型材地铁车车体耐撞性分析及吸能结构最优设计[D]. 大连: 大连交通大学, 2007.WANG Qing-yan. The crashworthiness and optimization of the aluminum subway vehicles[D]. Dalian: Dalian Jiaotong University, 2007. (in Chinese). [2] WIERZBICKI T. Crushing analysis of metal honeycombs[J]. International Journal of Impact Engineering, 1983, 1(2): 157-174. doi: 10.1016/0734-743X(83)90004-0 [3] 伞军民. 列车吸能结构碰撞仿真与分析[D]. 大连: 大连交通大学, 2009.SAN Jun-min. The crash simulation and analysis of the train's energy-absorbing structure[D]. Dalian: Dalian Jiaotong University, 2009. (in Chinese). [4] 罗玗琪. B型地铁车辆间鼓胀与诱导组合式吸能结构碰撞性能研究[D]. 长沙: 中南大学, 2011.LUO Yu-qi. Research on crashworthiness of both bulgy type and guide combined type energy-absorbing structures between B-type subway vehicles[D]. Changsha: Central South University, 2011. (in Chinese). [5] CALLADINE C R, ENGLISH R W. Strain-rate and inertia effects in the collapse of two types of energy-absorbing structure[J]. International Journal of Mechanical Sciences, 1984, 26(11/12): 689-701. [6] 卢文浩, 鲍荣浩. 动态冲击下能量吸收结构的惯性敏感性的数值模拟分析[J]. 振动与冲击, 2004, 23(3): 67-69. doi: 10.3969/j.issn.1000-3835.2004.03.018LU Wen-hao, BAO Rong-hao. Numerical simulation study on the inertia-sensitiveness of energy-absorbing structures under impact loading[J]. Journal of Vibration and Shock, 2004, 23(3): 67-69. (in Chinese). doi: 10.3969/j.issn.1000-3835.2004.03.018 [7] EJI U, KATSUHIRO M, TAKAHIRO S. Simulation analysis of built-up edge formation in machining of low carbon steel[J]. Bulletin of the Japan Society Precision Engineering, 1981, 15(4): 237-242. [8] STRENKOWASKI J S, CARROLL J T. A finite element model of orthogonal metal cutting[J]. Journal of Engineering for Industry, 1985, 107(4): 349-354. doi: 10.1115/1.3186008 [9] STRENKOWASKI J S, MOON K J. Finite element prediction of chip geometry and tool/workpiece temperature distribution in orthogonal metal cutting[J]. Journal of Manufacturing Science and Engineering, 1990, 112(3): 313-318. [10] SHIH A J. Finite element simulation of orthogonal metal cutting[J]. Journal of Engineering for Industry, 1995, 117(2): 84-93. [11] HUANG J M, BLACK J T. An evaluation of chip separation criteria for the FEM simulation of machining[J]. Journal of Manufacturing Science and Engineering, 1996, 118(4): 545-554. doi: 10.1115/1.2831066 [12] SMITH A J R, ARMAREGO E J A. Temperature prediction in orthogonal cutting with a finite difference approach[J]. CIRP Annals-Manufacturing Technology, 1981, 30(1): 9-13. doi: 10.1016/S0007-8506(07)60886-5 [13] CHILDS T H C. Ductile shear failure damage modelling and predicting built-up edge in steel machining[J]. Journal of Materials Processing Technology, 2013, 213(11): 1954-1969. doi: 10.1016/j.jmatprotec.2013.05.017 [14] CHILDS T H C. Developments in simulating built up edge formation in steel machining[C]∥WRHRNER K. Fifth CIRP Conference on High Performance Cutting. Amsterdam: Elsevier, 2012: 78-83. [15] CHILDS T H C. Towards simulating built-up-edge formation in the machining of steel[J]. CIRP Journal of Manufacturing Science and Technology, 2011, 4(1): 57-70. doi: 10.1016/j.cirpj.2011.07.002 [16] HAJMOHAMMADI M S, MOVAHHEDY M R, MORADI H. Investigation of thermal effects on machining chatter based on FEM simulation of chip formation[J]. CIRP Journal of Manufacturing Science and Technology, 2014, 7(1): 1-10. doi: 10.1016/j.cirpj.2013.11.001 [17] 常宁. 切削式吸能过程仿真研究[D]. 长沙: 中南大学, 2009.CHANG Ning. Simulation for energy-absorbing process in metal-cutting way[D]. Changsha: Central South University, 2009. (in Chinese). [18] 汤礼鹏. 城轨车辆切削式专用吸能装置研究[D]. 长沙: 中南大学, 2010.TANG Li-peng. Research on the special energy-absorbing structure of mass transit vehicle[D]. Changsha: Central South University, 2010. (in Chinese). [19] 雷成, 肖守讷, 罗世辉. 轨道车辆切削式吸能装置吸能特性研究[J]. 中国机械工程, 2013, 24(2): 263-267. doi: 10.3969/j.issn.1004-132X.2013.02.022LEI Cheng, XIAO Shou-ne, LUO Shi-hui. Research on energy absorption characteristics of rail vehicle energy-absorbing component in cutting way[J]. China Mechanical Engineering, 2013, 24(2): 263-267. (in Chinese). doi: 10.3969/j.issn.1004-132X.2013.02.022 [20] 雷成, 肖守讷, 罗世辉. 基于显式有限元的高速列车吸能装置吸能原理研究[J]. 铁道机车车辆, 2012, 32(2): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJC201202000.htmLEI Cheng, XIAO Shou-ne, LUO Shi-hui. Research on the energy-absorbing theory of high speed train energy-absorbing component based on the explicit finite element[J]. Railway Locomotive and Car, 2012, 32(2): 1-5. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDJC201202000.htm [21] 雷成, 肖守讷, 罗世辉. 轨道车辆新型车端专用吸能装置[J]. 西南交通大学学报, 2013, 48(4): 738-744. doi: 10.3969/j.issn.0258-2724.2013.04.022LEI Cheng, XIAO Shou-ne, LUO Shi-hui. New special energyabsorbing component at vehicle end of rail vehicles[J]. Journal of Southwest Jiaotong University, 2013, 48(4): 738-744. (in Chinese). doi: 10.3969/j.issn.0258-2724.2013.04.022 [22] 岳伟玲, 王喜顺, 罗昌杰, 等. 圆孔拉刀式吸能器吸能特性的研究[J]. 机械设计与制造, 2014(7): 27-30. doi: 10.3969/j.issn.1001-3997.2014.07.008YUE Wei-ling, WANG Xi-shun, LUO Chang-jie, et al. Round broaching energy absorption characteristics of energyabsorbing device[J]. Machinery Design and Manufacture, 2014(7): 27-30. (in Chinese). doi: 10.3969/j.issn.1001-3997.2014.07.008 [23] SINGACE A A, ELSOBKY H, REDDY T Y. On the eccentricity factor in the progressive crushing of tubes[J]. Interational Journal of Solids and Structures, 1995, 32(24): 3589-3602. doi: 10.1016/0020-7683(95)00020-B [24] SCHOKKER A, SRIDHARAN S, KASAGI A. Dynamic buckling of composite shells[J]. Computers and Structures, 1996, 59(1): 43-53. doi: 10.1016/0045-7949(95)00244-8 [25] SCHAUER D A, HOOVER C G, KAY G J, et al. Crashworthiness simulations with DYNA3D[J]. Transportation Research Record, 1996(1528): 124-129. [26] RAMESH M V, SEETHARAMU K N, GANESAN N, et al. Finite element modelling of heat transfer analysis in machining of isotropic materials[J]. International Journal of Heat and Mass Transfer, 1999, 42(9): 1569-1583. doi: 10.1016/S0017-9310(98)00259-2 [27] 牟金磊, 朱锡, 黄晓明, 等. 水下爆炸气泡载荷在加筋板塑性变形中的作用[J]. 振动与冲击, 2010, 29(5): 74-77, 241. doi: 10.3969/j.issn.1000-3835.2010.05.016MOU Jin-lei, ZHU Xi, HUANG Xiao-ming, et al. Effect of underwater explosion bubble on plastic displacement of stiffened plates[J]. Journal of Vibration and Shock, 2010, 29(5): 74-77, 241. (in Chinese). doi: 10.3969/j.issn.1000-3835.2010.05.016