留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于DTW的车辆轴温监测方法

曹源 王玉珏 马连川 陈磊

曹源, 王玉珏, 马连川, 陈磊. 基于DTW的车辆轴温监测方法[J]. 交通运输工程学报, 2015, 15(3): 78-84, 100. doi: 10.19818/j.cnki.1671-1637.2015.03.009
引用本文: 曹源, 王玉珏, 马连川, 陈磊. 基于DTW的车辆轴温监测方法[J]. 交通运输工程学报, 2015, 15(3): 78-84, 100. doi: 10.19818/j.cnki.1671-1637.2015.03.009
CAO Yuan, WANG Yu-jue, MA Lian-chuan, CHEN Lei. Monitoring method of vehicle axle temperature based on dynamic time warping[J]. Journal of Traffic and Transportation Engineering, 2015, 15(3): 78-84, 100. doi: 10.19818/j.cnki.1671-1637.2015.03.009
Citation: CAO Yuan, WANG Yu-jue, MA Lian-chuan, CHEN Lei. Monitoring method of vehicle axle temperature based on dynamic time warping[J]. Journal of Traffic and Transportation Engineering, 2015, 15(3): 78-84, 100. doi: 10.19818/j.cnki.1671-1637.2015.03.009

基于DTW的车辆轴温监测方法

doi: 10.19818/j.cnki.1671-1637.2015.03.009
基金项目: 

国家自然科学基金项目 51305021

国家自然科学基金项目 U1334211

国家自然科学基金项目 U1234205

“十二五”国家科技支撑计划项目 2015BAG12B01

详细信息
    作者简介:

    曹源(1982-),男,河南开封人,北京交通大学副教授,工学博士,从事高速列控系统监测研究

  • 中图分类号: U270.7

Monitoring method of vehicle axle temperature based on dynamic time warping

More Information
    Author Bio:

    CAO Yuan(1982-), male, associate professor, PhD, +86-10-51686121, ycao@bjtu.edu.cn

  • 摘要: 为了处理车辆轴温可能出现的跳变、缺失、噪声等异常数据, 有效降低误报率, 提出了基于动态时间规整算法的车辆轴温状态监测方法, 将轴温历史监测数据和历史统计数据进行指数平滑预处理, 在训练阶段将数据反复迭代得到不同轴温模式的参考样本, 计算了实时轴温和参考样本各数据帧之间的欧氏距离, 得到帧匹配距离矩阵, 运用动态规划和回溯的思想, 求出累积距离矩阵和动态规整路径, 将动态规整距离作为2个时间序列相似度的量化指标, 找出最小动态规整距离对应的轴温模式, 从而得到状态监测结果。仿真结果表明: 在MATLAB仿真中, 输入1000个时长为50~300min的轴温测试样本, 其最大响应时间小于0.4S, 共出现29次错误匹配, 误报率低于3%。通过对测试样本和参考样本的各数据帧进行指数平滑处理, 有效消除车辆轴温出现跳变的干扰, 虽然跳变值和跳变点数量不同, 但相对动态规整距离无变化, 对状态监测结果无影响。可见, 车辆轴温状态监测方法能够满足车辆轴温状态监测的实时性和准确度要求, 减少了误报率。

     

  • 图  1  状态监测流程

    Figure  1.  Condition monitoring process

    图  2  四个列车轴温测试样本

    Figure  2.  Four test samples of tra1n axle temperature

    图  3  动态规整距离

    Figure  3.  Dynamic time warping distances

    图  4  动态规整路径

    Figure  4.  Dynamic time warping paths

    图  5  匹配频数分布

    Figure  5.  Matching frequency distribution

    图  6  样本匹配结果

    Figure  6.  Matching result of samples

    表  1  参考样本

    Table  1.   Reference samples

    表  2  测试样本与参考样本的DTW距离

    Table  2.   Dynamic time warping distances between test samples and reference samples

    表  3  不同跳变序列的动态规整距离

    Table  3.   Dynamic time warping distances of different hopping seq uences

  • [1] 张周锁, 胥永刚, 何正嘉. 新型高速机车轴温监测系统的研究与开发[J]. 西安交通大学学报, 2001, 35(3): 280-283. doi: 10.3321/j.issn:0253-987X.2001.03.014

    ZHANG Zhou-suo, XU Yong-gang, HE Zheng-jia. New monitoring system of bearing temperature in high speed locomotive[J]. Journal of Xi'an Jiaotong University, 2001, 35(3): 280-283. (in Chinese) doi: 10.3321/j.issn:0253-987X.2001.03.014
    [2] 杨军, 孙文斌. CRH5型动车组轴温检测系统改进方案探讨[J]. 大连交通大学学报, 2013, 34(5): 37-41. doi: 10.3969/j.issn.1673-9590.2013.05.009

    YANG Jun, SUN Wen-bin. Study on the solution for improving the hot axel detection system[J]. Journal of Dalian Jiaotong University, 2013, 34(5): 37-41. (in Chinese) doi: 10.3969/j.issn.1673-9590.2013.05.009
    [3] 余祖俊, 许西宁, 史红梅. 单总线数字式机车轴温监测报警装置[J]. 电子测量与仪器学报, 2001, 15(3): 55-60. https://www.cnki.com.cn/Article/CJFDTOTAL-DZIY200103011.htm

    YU Zu-jun, XU Xi-ning, SHI Hong-mei. l-wire digital device of locomotive bearing temperature detection and alerting[J]. Journal of Electronic Measurement and Instrument, 2001, 15(3): 55-60. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZIY200103011.htm
    [4] 哈大雷, 王乾, 蒋涛, 等. 新型轴温监测系统在高速动车组上的应用[J]. 大连交通大学学报, 2013, 34(1): 89-94. doi: 10.3969/j.issn.1673-9590.2013.01.019

    HA Da-1ei, WANG Qian, JIANG Tao, et al. Application of new axle temperature monitoring system on high-speed EMUs[J]. Journal of Dalian Jiaotong University, 2013, 34(1): 89-94. (in Chinese) doi: 10.3969/j.issn.1673-9590.2013.01.019
    [5] KEOGH E, RATANAMAHATANA C A. Exact indexing of dynamic time warping[J]. Knowledge and Information Systems, 2005, 7(3): 358-386. doi: 10.1007/s10115-004-0154-9
    [6] ZHEN D, WANG T, GU F, et al. Fault diagnosis of motor drives using stator current signal analysis based on dynamic time warping[J]. Mechanical Systems and Signal Processing, 2013, 34(1/2): 191-202.
    [7] BLACKBURN J, RIBEIRO E. Human motion recognition using isomap and dynamic time warping[C]∥ELGAMMAL A, ROSENHAHN B, KLETTE R. Human Motion-Understanding, Modeling, Capture and Animation. Berlin: Springer, 2007: 285-298.
    [8] GILLIAN N, KNAPP R B, O'MODHRAIN S. Recognition of multivariate temporal musical gestures using n-dimensional dynamic timewarping[C]∥JENSENIUS A R, TVEIT A, GODOY R I, et al. 11th International Conference on New Interfaces for Musical Expression. Trier: DBLP, 2011: 337-342.
    [9] 孙博, 康锐, 谢劲松. 故障预测与健康管理系统研究和应用现状综述[J]. 系统工程与电子技术, 2007, 29(10): 1762-1767. doi: 10.3321/j.issn:1001-506x.2007.10.042

    SUN Bo, KANG Rui, XIE Jin-song. Research and application of the prognostic and health management system[J]. Systems Engineering and Electronics, 2007, 29(10): 1762-1767. (in Chinese) doi: 10.3321/j.issn:1001-506x.2007.10.042
    [10] JUN B H. Fault detection using dynamic time warping(DTW)algorithm and discriminant analysis for swine wastewater treatment[J]. Journal of Hazardous Materials, 2011, 185(1): 262-268. doi: 10.1016/j.jhazmat.2010.09.027
    [11] 徐波, 唐海龙, 李行善. 基于DTW的涡扇发动机气路故障定量诊断方法[J]. 北京航空航天大学学报, 2004, 30(6): 524-528. doi: 10.3969/j.issn.1001-5965.2004.06.009

    XU Bo, TANG Hai-long, LI Xing-shan. DTW based quantitative fault diagnosis of gas path component in turbofan[J]. Journal of Beijing University of Aeronautics and Astronautics, 2004, 30(6): 524-528. (in Chinese) doi: 10.3969/j.issn.1001-5965.2004.06.009
    [12] ISLAM M S, HANNAN M A, BASRI H, et al. Solid waste bin detection and classification using dynamic time warping and MLP classifier[J]. Waste Management, 2014, 34(2): 281-290. doi: 10.1016/j.wasman.2013.10.030
    [13] RATH T M, MANMATHA R. Word image matching using dynamic time warping[C]∥IEEE. CVPR 2003. Now York: IEEE, 2003: 521-527.
    [14] TOMASI G, VAN DEN BERG F, ANDERSSON C. Correlation optimized warping and dynamic time warping as preprocessing methods for chromatographic data[J]. Journal of Chemometrics, 2004, 18(5): 231-241. doi: 10.1002/cem.859
    [15] YU Da-ren, YU Xiao, HU Qing-hua, et al. Dynamic time warping constraint learning for large margin nearest neighbor classification[J]. Information Sciences, 2011, 181(13): 2787-2796. doi: 10.1016/j.ins.2011.03.001
    [16] 王振恒, 赵劲松, 李昌磊. 一种新的间歇过程故障诊断策略[J]. 化工学报, 2008, 59(11): 2837-2842. doi: 10.3321/j.issn:0438-1157.2008.11.023

    WANG Zhen-heng, ZHAO Jin-song, LI Chang-lei. Novel fault diagnosis strategy for batch chemical processes[J]. Journal of Chemical Industry and Engineering, 2008, 59(11): 2837-2842. (in Chinese) doi: 10.3321/j.issn:0438-1157.2008.11.023
    [17] RAMAKER H, VAN SPRANG E N M, WESTERHUIS J A, et al. Dynamic time warping of spectroscopic BATCH data[J]. Analytica Chimica Acta, 2003, 498(1/2): 133-153.
    [18] ARICI T, CELEBI S, AYDIN A S, et al. Robust gesture recognition using feature pre-processing and weighted dynamic time warping[J]. Multimedia Tools and Applications, 2014, 72(3): 3045-3062. doi: 10.1007/s11042-013-1591-9
    [19] 王君伟, 范启富, 白凌云. 基于DTW的红外乘客计数系统[J]. 测控技术, 2008, 27(6): 32-35. doi: 10.3969/j.issn.1000-8829.2008.06.010

    WANG Jun-wei, FAN Qi-fu, BAI Ling-yun. DTW based automatic passenger counting system using infrared sensors[J]. Measurement and Control Technology, 2008, 27(6): 32-35. (in Chinese) doi: 10.3969/j.issn.1000-8829.2008.06.010
    [20] HELWIG N E, HONG S, HSIAO-WECKSLER E T, et al. Methods to temporally align gait cycle data[J]. Journal of Biomechanics, 2011, 44(3): 561-566. doi: 10.1016/j.jbiomech.2010.09.015
    [21] 高剑, 张彩明, 孟祥旭, 等. 一种基于DDTW的三维碎片自动拼接方法[J]. 计算机学报, 2009, 32(2): 342-349. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJX200902019.htm

    GAO Jian, ZHANG Cai-ming, MENG Xiang-xu, et al. Automatic fragment reassembly method based on DDTW match[J]. Chinese Journal of Computers, 2009, 32(2): 342-349. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSJX200902019.htm
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  663
  • HTML全文浏览量:  182
  • PDF下载量:  882
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-02-21
  • 刊出日期:  2015-06-20

目录

    /

    返回文章
    返回