留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

飞机防冰腔结构参数的重要性测度

张峰 姚会举 南华 吕程诚

张峰, 姚会举, 南华, 吕程诚. 飞机防冰腔结构参数的重要性测度[J]. 交通运输工程学报, 2015, 15(3): 85-91. doi: 10.19818/j.cnki.1671-1637.2015.03.010
引用本文: 张峰, 姚会举, 南华, 吕程诚. 飞机防冰腔结构参数的重要性测度[J]. 交通运输工程学报, 2015, 15(3): 85-91. doi: 10.19818/j.cnki.1671-1637.2015.03.010
ZHANG Feng, YAO Hui-ju, NAN Hua, LU: Cheng-cheng. Importance measure of aircraft anti-icing cavity stucture parameters[J]. Journal of Traffic and Transportation Engineering, 2015, 15(3): 85-91. doi: 10.19818/j.cnki.1671-1637.2015.03.010
Citation: ZHANG Feng, YAO Hui-ju, NAN Hua, LU: Cheng-cheng. Importance measure of aircraft anti-icing cavity stucture parameters[J]. Journal of Traffic and Transportation Engineering, 2015, 15(3): 85-91. doi: 10.19818/j.cnki.1671-1637.2015.03.010

飞机防冰腔结构参数的重要性测度

doi: 10.19818/j.cnki.1671-1637.2015.03.010
基金项目: 

高等学校博士学科点专项科研基金项目 20136102120032

高等学校学科创新引智计划项目 B07050

西北工业大学基础研究基金项目 JC20100232

详细信息
    作者简介:

    张峰(1982-),男,湖北监利人,西北工业大学副教授,工学博士,从事飞行器可靠性分析与设计研究

  • 中图分类号: V224

Importance measure of aircraft anti-icing cavity stucture parameters

More Information
    Author Bio:

    ZHANG Feng(1982-), male, associate professor, PhD, +86-29-88431002, yifengzhang@163.com

  • 摘要: 分析了常见的3种飞机防冰腔结构, 应用Gambit软件建立了双蒙皮防冰腔结构网格模型。采用Spalart-Allmaras湍流模型模拟热气在防冰腔内的流动状况, 采用Fluent软件进行传热效率分析, 建立了防冰腔结构参数对传热效率的重要性测度模型。通过随机响应面法建立防冰腔结构参数与传热效率的函数关系, 采用低分散性抽样法求解防冰腔结构参数的重要性测度, 建立了防冰腔结构参数的重要性测度分析流程。分析结果表明: 当笛形管中心到外蒙皮的距离从35.15mm增加到38.85mm时, 传热系数由0.505减小到0.463;当双蒙皮通道高度从2.85mm增加到3.15mm时, 传热系数由0.495减小到0.476;当射流孔孔径从1.90mm增加到2.10mm时, 传热系数从0.505减小到0.494;当射流孔角度从14.25°增加到15.75°时, 传热系数从0.476增加到0.494。防冰腔结构参数的重要性排序依次为射流孔角度、笛形管中心到外蒙皮距离、射流孔孔径、双蒙皮通道高度, 在防冰腔结构加工与装配过程中, 需要重点考虑射流孔角度与笛形管中心到外蒙皮距离这2个参数。

     

  • 图  1  防冰腔结构

    Figure  1.  Anti-icing cavity structure

    图  2  双蒙皮结构

    Figure  2.  Double-skin structure

    图  3  笛形管结构

    Figure  3.  Piccolo tube structure

    图  4  防冰腔网格模型

    Figure  4.  Grid model of antr-icing cavity

    图  5  网格加密

    Figure  5.  Grid refinement

    图  6  外蒙皮表面温度

    Figure  6.  Surface temperature of outer skin

    图  7  笛形管中心到外蒙皮距离对传热效率的影响

    Figure  7.  Effect of distance between piccolo tube center and outer skin on heat transfer efficiency

    图  8  双蒙皮通道高度对传热效率的影响

    Figure  8.  Effect of double-skin channel height on heat transfer efficiency

    图  9  射流孔孔径对传热效率的影响

    Figure  9.  Effect of jet hole diameter on heat transfer efficiency

    图  10  射流孔角度对传热效率的影响

    Figure  10.  Effect of jet hole angle on heat transfer efficiency

    图  11  重要性测度分析流程

    Figure  11.  Analysis flow of importance measure

    图  12  重要性测度分析结果

    Figure  12.  Analysis1 result of importance measure

    表  1  边界条件类型

    Table  1.   Types of boundary conditions

    表  2  参数的分布类型

    Table  2.   Distribution types of parameters

  • [1] 周玉洁. 热气腔结构的优化设计与数值模拟[D]. 南京: 南京航空航天大学, 2010.

    ZHOU Yu-jie. Optimal design and numerical simulation of the hot air cavity structure[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2010. (in Chinese)
    [2] THOMAS S K, CASSONI R P. Aircraft anti-icing and de-icing techniques and modeling[J]. Journal of Aircraft, 1996, 33(5): 841-854. doi: 10.2514/3.47027
    [3] 李航航, 周敏. 飞机结冰探测技术及防除冰系统工程应用[J]. 航空工程进展, 2010, 1(2): 112-115. doi: 10.3969/j.issn.1674-8190.2010.02.004

    LI Hang-hang, ZHOU Min. Engineering application of icing detection technique and anti-icing and deicing system on aircraft[J]. Advances in Aeronautical Science and Engineering, 2010, 1(2): 112-115. (in Chinese) doi: 10.3969/j.issn.1674-8190.2010.02.004
    [4] 卜雪琴, 郁嘉, 林贵平, 等. 机翼气热防冰系统设计[J]. 北京航空航天大学学报, 2010, 36(8): 927-930.

    BU Xue-qin, YU Jia, LIN Gui-ping, et al. Investigation of the design of wing hot-air anti-icing system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2010, 36(8): 927-930. (in Chinese)
    [5] 常士楠, 袁美名, 霍西桓, 等. 某型飞机机翼防冰系统计算分析[J]. 航空动力学报, 2008, 23(6): 1141-1145. https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI200806031.htm

    CHANG Shi-nan, YUAN Mei-ming, HUO Xi-heng, et al. Investigations of the bleed air anti-icing system for an aircraft wing[J]. Journal of Aerospace Power, 2008, 23(6): 1141-1145. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI200806031.htm
    [6] 姚会举. 机翼热气防冰腔功能可靠性分析及优化设计[D]. 西安: 西北工业大学, 2014.

    YAO Hui-ju. Function reliability analysis and optimal design of the wing hot-air anti-icing cavity[D]. Xi'an: Northwestern Polytechnical University, 2014. (in Chinese)
    [7] SILVA G A L, SILVARES O M, ZERBINI E J G J. Numerical simulation of airfoil thermal anti-ice operation, part 1: mathematical modeling[J]. Journal of Aircraft, 2007, 44(2): 627 -634. doi: 10.2514/1.544
    [8] LIU H H T, HUA Jun. Three-dimensional integrated thermodynamic simulation for wing anti-icing system[J]. Journal of Aircraft, 2004, 41(6): 1291-1297. doi: 10.2514/1.5594
    [9] MORENCY F, TEZOK F, PARASCHIVOIU I. Heat and mass transfer in the case of anti-icing system simulation[J]. Journal of Aircraft, 2000, 37(2): 245-252. doi: 10.2514/2.2613
    [10] BROWN J M, RAGHUNATHAN S, WATTERSON J K. Heat transfer correlation for anti-icing system[J]. Journal of Aircraft, 2003, 40(1): 65-70.
    [11] 杜雁霞, 桂业伟, 肖春华, 等. 飞机结冰过程的传热研究[J]. 工程热物理学报, 2009, 30(11): 1923-1925. doi: 10.3321/j.issn:0253-231X.2009.11.034

    DU Yan-xia, GUI Ye-wei, XIAO Chun-hua, et al. Investigation of heat transfer in aircraft icing[J]. Journal of Engineering Thermophysics, 2009, 30(11): 1923-1925. (in Chinese) doi: 10.3321/j.issn:0253-231X.2009.11.034
    [12] 管宁. 三维机翼防冰热载荷的数值模拟[D]. 南京: 南京航空航天大学, 2007.

    GUAN Ning. Numerical simulation of anti-icing thermal loads on a 3d airfoil[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2007. (in Chinese)
    [13] 桑为民, 蒋胜矩, 李凤蔚. 翼型冰增长和结冰影响的数值模拟研究[J]. 应用力学学报, 2008, 25(3): 371-375. https://www.cnki.com.cn/Article/CJFDTOTAL-YYLX200803006.htm

    SANG Wei-min, JIANG Sheng-ju, LI Feng-wei. Numerical simulation for ice accretion and icing effects on airfoils[J]. Chinese Journal of Applied Mechanics, 2008, 25(3): 371-375. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YYLX200803006.htm
    [14] 周志宏, 易贤, 桂业伟, 等. 复杂3维外形霜状冰数值模拟[J]. 四川大学学报: 工程科学版, 2012, 44(增2): 158-162. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH2012S2039.htm

    ZHOU Zhi-hong, YI Xian, GUI Ye-wei, et al. Prediction of rime ice accretion on complex configurations[J]. Journal of Sichuan University: Engineering Science Edition, 2012, 44(S2): 158-162. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH2012S2039.htm
    [15] 张强, 高正红. 基于六自由度方程的飞机结冰问题仿真[J]. 飞行力学, 2013, 31(1): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-FHLX201301000.htm

    ZHANG Qiang, GAO Zheng-hong. Simulation of ice accretion based on six degree-of-freedom equation[J]. Flight Dynamics, 2013, 31(1): 1-4. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FHLX201301000.htm
    [16] 彭珑, 卜雪琴, 林贵平, 等. 热气防冰腔结构参数对其热性能影响研究[J]. 空气动力学学报, 2014, 32(6): 848-853. https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201406019.htm

    PENG Long, BU Xue-qin, LIN Gui-ping, et al. Influence of the structural parameters on thermal performance of the hot air anti-icing system[J]. Acta Aerodynamica Sinica, 2014, 32(6): 848-853. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201406019.htm
    [17] 卜雪琴, 林贵平, 郁嘉. 三维内外热耦合计算热气防冰系统表面温度[J]. 航空动力学报, 2009, 24(11): 2495-2500. https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI200911015.htm

    BU Xue-qin, LIN Gui-ping, YU Jia. Three-dimensional conjugate heat transfer simulation for the surface temperature of wing hot-air anti-icing system[J]. Journal of Aerospace Power, 2009, 24(11): 2495-2500. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI200911015.htm
    [18] SALTELLI A. Sensitivity analysis for importance assessment[J]. Risk Analysis, 2002, 22(3): 579-590. doi: 10.1111/0272-4332.00040
    [19] BORGONOVO E. A new uncertainty importance measure[J]. Reliability Engineering and System Safety, 2007, 92(6): 771-784. doi: 10.1016/j.ress.2006.04.015
    [20] WANG Pan, LU Zhen-zhou, TANG Zhang-chun. Importance measure analysis with epistemic uncertainty and its moving least square solution[J]. Computers and Mathematics with Applications, 2013, 66(4): 460-471. doi: 10.1016/j.camwa.2013.06.001
    [21] LI Hong-shuang, LU Zhen-zhou, YUAN Xiu-kai. Nataf transformation based point estimate method[J]. Chinese Science Bulletin, 2008, 53(17): 2586-2592.
    [22] 李炜. 边坡稳定性联合评价方法[J]. 交通运输工程学报, 2010, 10(5): 8-11. doi: 10.3969/j.issn.1671-1637.2010.05.002

    LI Wei. Combined evaluation method of slope stability[J]. Journal of Traffic and Transportation Engineering, 2010, 10(5): 8-11. (in Chinese) doi: 10.3969/j.issn.1671-1637.2010.05.002
    [23] LIU Ying. Application of stochastic response surface method in the structural reliability[J]. Procedia Engineering, 2012, 28: 661-664. doi: 10.1016/j.proeng.2012.01.787
    [24] KAYMAZ I, MCMAHON C A. A response surface method based on weighted regression for structural reliability analysis[J]. Probabilistic Engineering Mechanic, 2005, 20(1): 11-17. doi: 10.1016/j.probengmech.2004.05.005
    [25] 汪新槐. 多维数值积分的数论方法及其在结构可靠度分析中的应用[D]. 南京: 河海大学, 2005.

    WANG Xin-huai. Number theoretical method for numerical multiple integrals and the application in structural reliability analysis[D]. Nanjing: Hohai University, 2005. (in Chinese)
    [26] DAI Hong-zhe, WANG Wei. Application of low-discrepancy sampling method in structural reliability analysis[J]. Structural Safety, 2009, 31(1): 55-64. doi: 10.1016/j.strusafe.2008.03.001
    [27] 戴鸿哲, 王伟. 结构可靠性灵敏度分析的低偏差抽样方法[J]. 工程力学, 2010, 27(1): 104-108. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201001021.htm

    DAI Hong-zhe, WANG Wei. Low discrepancy sampling method for structural reliability sensitivity analysis[J]. Engineering Mechanics, 2010, 27(1): 104-108. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201001021.htm
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  546
  • HTML全文浏览量:  99
  • PDF下载量:  799
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-01-12
  • 刊出日期:  2015-06-20

目录

    /

    返回文章
    返回