-
摘要: 分析了常见的3种飞机防冰腔结构, 应用Gambit软件建立了双蒙皮防冰腔结构网格模型。采用Spalart-Allmaras湍流模型模拟热气在防冰腔内的流动状况, 采用Fluent软件进行传热效率分析, 建立了防冰腔结构参数对传热效率的重要性测度模型。通过随机响应面法建立防冰腔结构参数与传热效率的函数关系, 采用低分散性抽样法求解防冰腔结构参数的重要性测度, 建立了防冰腔结构参数的重要性测度分析流程。分析结果表明: 当笛形管中心到外蒙皮的距离从35.15mm增加到38.85mm时, 传热系数由0.505减小到0.463;当双蒙皮通道高度从2.85mm增加到3.15mm时, 传热系数由0.495减小到0.476;当射流孔孔径从1.90mm增加到2.10mm时, 传热系数从0.505减小到0.494;当射流孔角度从14.25°增加到15.75°时, 传热系数从0.476增加到0.494。防冰腔结构参数的重要性排序依次为射流孔角度、笛形管中心到外蒙皮距离、射流孔孔径、双蒙皮通道高度, 在防冰腔结构加工与装配过程中, 需要重点考虑射流孔角度与笛形管中心到外蒙皮距离这2个参数。Abstract: The three common aircraft anti-icing cavity structures were analyzed, the grid model of anti-icing cavity structure with double skins was set up by using Gambit software. The flowing condition of heat in anti-icing cavity structure was simulated by using Spalart-Allmaras turbulence model, the heat transfer efficiency was analyzed with Fluent software, and the importance measure model of anti-icing cavity structure on heat transfer efficiency was built. The function relationship between structure parameters and heat transfer coefficient for anti-icing cavity was established by using the stochastic response surface method, the low dispersion sampling method was used to solve the importance measure, and the analysis process of importance measure for anti-icing cavity structure parameters was set up. Analysis result shows that when the distance between piccolo tube center and outer skin increases from 35.15 mm to 38.85 mm, the heat transfer coefficient reduces from 0. 505 to 0. 463. When the channel height of double skins increases from 2.85 mm to 3. 15 mm, the heat transfer coefficient reduces from 0. 495 to 0. 476. When the jet hole diameter increases from 1.90 mm to 2.10 mm, the heat transfer coefficient reduces from 0. 505 to 0. 494. When the jet hole angle increases from 14. 25~ to 15.75~, the heat transfer coefficient increases from 0. 476 to 0. 494. The importance order of anti-icing cavity parameters is the jet hole angle, the distance between piccolo tube center and outer skin, the jet hole diameter, the channel height of double skins. In the machining and assembly process of anti- icing cavity structure, the jet hole angle and the distance between piccolo tube center and outer skin are mainly considered.
-
表 1 边界条件类型
Table 1. Types of boundary conditions
表 2 参数的分布类型
Table 2. Distribution types of parameters
-
[1] 周玉洁. 热气腔结构的优化设计与数值模拟[D]. 南京: 南京航空航天大学, 2010.ZHOU Yu-jie. Optimal design and numerical simulation of the hot air cavity structure[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2010. (in Chinese) [2] THOMAS S K, CASSONI R P. Aircraft anti-icing and de-icing techniques and modeling[J]. Journal of Aircraft, 1996, 33(5): 841-854. doi: 10.2514/3.47027 [3] 李航航, 周敏. 飞机结冰探测技术及防除冰系统工程应用[J]. 航空工程进展, 2010, 1(2): 112-115. doi: 10.3969/j.issn.1674-8190.2010.02.004LI Hang-hang, ZHOU Min. Engineering application of icing detection technique and anti-icing and deicing system on aircraft[J]. Advances in Aeronautical Science and Engineering, 2010, 1(2): 112-115. (in Chinese) doi: 10.3969/j.issn.1674-8190.2010.02.004 [4] 卜雪琴, 郁嘉, 林贵平, 等. 机翼气热防冰系统设计[J]. 北京航空航天大学学报, 2010, 36(8): 927-930.BU Xue-qin, YU Jia, LIN Gui-ping, et al. Investigation of the design of wing hot-air anti-icing system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2010, 36(8): 927-930. (in Chinese) [5] 常士楠, 袁美名, 霍西桓, 等. 某型飞机机翼防冰系统计算分析[J]. 航空动力学报, 2008, 23(6): 1141-1145. https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI200806031.htmCHANG Shi-nan, YUAN Mei-ming, HUO Xi-heng, et al. Investigations of the bleed air anti-icing system for an aircraft wing[J]. Journal of Aerospace Power, 2008, 23(6): 1141-1145. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI200806031.htm [6] 姚会举. 机翼热气防冰腔功能可靠性分析及优化设计[D]. 西安: 西北工业大学, 2014.YAO Hui-ju. Function reliability analysis and optimal design of the wing hot-air anti-icing cavity[D]. Xi'an: Northwestern Polytechnical University, 2014. (in Chinese) [7] SILVA G A L, SILVARES O M, ZERBINI E J G J. Numerical simulation of airfoil thermal anti-ice operation, part 1: mathematical modeling[J]. Journal of Aircraft, 2007, 44(2): 627 -634. doi: 10.2514/1.544 [8] LIU H H T, HUA Jun. Three-dimensional integrated thermodynamic simulation for wing anti-icing system[J]. Journal of Aircraft, 2004, 41(6): 1291-1297. doi: 10.2514/1.5594 [9] MORENCY F, TEZOK F, PARASCHIVOIU I. Heat and mass transfer in the case of anti-icing system simulation[J]. Journal of Aircraft, 2000, 37(2): 245-252. doi: 10.2514/2.2613 [10] BROWN J M, RAGHUNATHAN S, WATTERSON J K. Heat transfer correlation for anti-icing system[J]. Journal of Aircraft, 2003, 40(1): 65-70. [11] 杜雁霞, 桂业伟, 肖春华, 等. 飞机结冰过程的传热研究[J]. 工程热物理学报, 2009, 30(11): 1923-1925. doi: 10.3321/j.issn:0253-231X.2009.11.034DU Yan-xia, GUI Ye-wei, XIAO Chun-hua, et al. Investigation of heat transfer in aircraft icing[J]. Journal of Engineering Thermophysics, 2009, 30(11): 1923-1925. (in Chinese) doi: 10.3321/j.issn:0253-231X.2009.11.034 [12] 管宁. 三维机翼防冰热载荷的数值模拟[D]. 南京: 南京航空航天大学, 2007.GUAN Ning. Numerical simulation of anti-icing thermal loads on a 3d airfoil[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2007. (in Chinese) [13] 桑为民, 蒋胜矩, 李凤蔚. 翼型冰增长和结冰影响的数值模拟研究[J]. 应用力学学报, 2008, 25(3): 371-375. https://www.cnki.com.cn/Article/CJFDTOTAL-YYLX200803006.htmSANG Wei-min, JIANG Sheng-ju, LI Feng-wei. Numerical simulation for ice accretion and icing effects on airfoils[J]. Chinese Journal of Applied Mechanics, 2008, 25(3): 371-375. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YYLX200803006.htm [14] 周志宏, 易贤, 桂业伟, 等. 复杂3维外形霜状冰数值模拟[J]. 四川大学学报: 工程科学版, 2012, 44(增2): 158-162. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH2012S2039.htmZHOU Zhi-hong, YI Xian, GUI Ye-wei, et al. Prediction of rime ice accretion on complex configurations[J]. Journal of Sichuan University: Engineering Science Edition, 2012, 44(S2): 158-162. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH2012S2039.htm [15] 张强, 高正红. 基于六自由度方程的飞机结冰问题仿真[J]. 飞行力学, 2013, 31(1): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-FHLX201301000.htmZHANG Qiang, GAO Zheng-hong. Simulation of ice accretion based on six degree-of-freedom equation[J]. Flight Dynamics, 2013, 31(1): 1-4. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FHLX201301000.htm [16] 彭珑, 卜雪琴, 林贵平, 等. 热气防冰腔结构参数对其热性能影响研究[J]. 空气动力学学报, 2014, 32(6): 848-853. https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201406019.htmPENG Long, BU Xue-qin, LIN Gui-ping, et al. Influence of the structural parameters on thermal performance of the hot air anti-icing system[J]. Acta Aerodynamica Sinica, 2014, 32(6): 848-853. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201406019.htm [17] 卜雪琴, 林贵平, 郁嘉. 三维内外热耦合计算热气防冰系统表面温度[J]. 航空动力学报, 2009, 24(11): 2495-2500. https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI200911015.htmBU Xue-qin, LIN Gui-ping, YU Jia. Three-dimensional conjugate heat transfer simulation for the surface temperature of wing hot-air anti-icing system[J]. Journal of Aerospace Power, 2009, 24(11): 2495-2500. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI200911015.htm [18] SALTELLI A. Sensitivity analysis for importance assessment[J]. Risk Analysis, 2002, 22(3): 579-590. doi: 10.1111/0272-4332.00040 [19] BORGONOVO E. A new uncertainty importance measure[J]. Reliability Engineering and System Safety, 2007, 92(6): 771-784. doi: 10.1016/j.ress.2006.04.015 [20] WANG Pan, LU Zhen-zhou, TANG Zhang-chun. Importance measure analysis with epistemic uncertainty and its moving least square solution[J]. Computers and Mathematics with Applications, 2013, 66(4): 460-471. doi: 10.1016/j.camwa.2013.06.001 [21] LI Hong-shuang, LU Zhen-zhou, YUAN Xiu-kai. Nataf transformation based point estimate method[J]. Chinese Science Bulletin, 2008, 53(17): 2586-2592. [22] 李炜. 边坡稳定性联合评价方法[J]. 交通运输工程学报, 2010, 10(5): 8-11. doi: 10.3969/j.issn.1671-1637.2010.05.002LI Wei. Combined evaluation method of slope stability[J]. Journal of Traffic and Transportation Engineering, 2010, 10(5): 8-11. (in Chinese) doi: 10.3969/j.issn.1671-1637.2010.05.002 [23] LIU Ying. Application of stochastic response surface method in the structural reliability[J]. Procedia Engineering, 2012, 28: 661-664. doi: 10.1016/j.proeng.2012.01.787 [24] KAYMAZ I, MCMAHON C A. A response surface method based on weighted regression for structural reliability analysis[J]. Probabilistic Engineering Mechanic, 2005, 20(1): 11-17. doi: 10.1016/j.probengmech.2004.05.005 [25] 汪新槐. 多维数值积分的数论方法及其在结构可靠度分析中的应用[D]. 南京: 河海大学, 2005.WANG Xin-huai. Number theoretical method for numerical multiple integrals and the application in structural reliability analysis[D]. Nanjing: Hohai University, 2005. (in Chinese) [26] DAI Hong-zhe, WANG Wei. Application of low-discrepancy sampling method in structural reliability analysis[J]. Structural Safety, 2009, 31(1): 55-64. doi: 10.1016/j.strusafe.2008.03.001 [27] 戴鸿哲, 王伟. 结构可靠性灵敏度分析的低偏差抽样方法[J]. 工程力学, 2010, 27(1): 104-108. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201001021.htmDAI Hong-zhe, WANG Wei. Low discrepancy sampling method for structural reliability sensitivity analysis[J]. Engineering Mechanics, 2010, 27(1): 104-108. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201001021.htm