Prediction method of aero-engine life on wing based on LS-SVM algorithm and performance reliability
-
摘要: 以航空发动机的实际性能监测数据为基础, 建立了时变性能退化模型, 并进行了性能趋势预测。根据监测数据中大量与在翼寿命紧密相关的信息, 分析了性能退化过程与失效分布函数之间的关系, 得到了给定可靠度下的航空发动机在翼寿命。以航空发动机的实际在翼寿命为基础, 利用K-S拟合检验方法对在翼寿命分布模型进行检验, 采用最小二乘支持向量机确定了模型参数。结合性能退化趋势, 计算了修正后的航空发动机在翼寿命, 并以6台PW4000航空发动机为案例进行实例验证。分析结果表明: 当正则化参数分别为25、37、28、40、27与35时, 6台PW4000航空发动机的实际在翼寿命依次为6 921、7 160、7 820、8 490、8 498、6 921循环, 对应的在翼寿命预测值依次为6 534、6 726、7 378、7 940、9 103、6 534循环, 最大相对误差为0.071 190, 最小相对误差为0.055 917, 平均相对误差为0.060 824, 可见, 提出的方法可以很好地满足工程实际需要。Abstract: Based on the monitoring data of practical performance for aero-engine, the degradation model of time-varying performance was established, and the performance trend was predicted. According to the much information related to aero-engine life on wing in the monitoring data, the relation between the performance degradation process and the failure distribution function was analyzed, and the aero-engine life on wing under a given reliability was obtained. Based on the practical life data on wing for aero-engine, the distribution model of life on wing was tested by using K-S fitting test method, and the model parameters was determined by using least squares- support vector machine (LS-SVM). Combined with the performance degradation trend, the revised life on wing for aero-engine was calculated, and example verification on six PW4000 aero-engines was carried out. Analysis result shows that when regularization parameters are 25, 37, 28, 40, 27 and 35 respectively, the practical lives on wing for six PW4000 aero-engines are 6 921, 7 160, 7 820, 8 490, 8 498, 6 921 cycles in order, while the corresponding prediction values are 6 534, 6 726, 7 378, 7 940, 9 103, 6 534 cycles in order. The maximum relative error is 0. 071 190, the minimum relative error is 0. 055 917, and the mean relative error is 0.060 824. The practical engineering requirement can be commendably satisfied by using the proposed method.
-
Key words:
- aero-engine /
- life on wing /
- performance reliability /
- times series /
- Weibull distribution /
- LS-SVM
-
表 1 工况1 EGTM数据
Table 1. EGTM data under condition 1
表 2 工况2 EGTM数据
Table 2. EGTM data under condition 2
表 3 工况3 EGTM数据
Table 3. EGTM data under condition 3
表 4 工况4 EGTM数据
Table 4. EGTM data under condition 4
-
[1] 戎翔. 民航发动机健康管理中的寿命预测与维修决策方法研究[D]. 南京: 南京航空航天大学, 2008.RONG Xiang. Methods of life prediction and maintenance decision making in civil aero engine health management[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2008. (in Chinese) [2] 王烨, 左洪福, 蔡景, 等. 基于Bayesian推断和LS-SVM的发动机在翼寿命预测模型[J]. 南京理工大学学报, 2009, 37(6): 955-959. https://www.cnki.com.cn/Article/CJFDTOTAL-NJLG201306031.htmWANG Ye, ZUO Hong-fu, CAI Jing, et al. Forecasting model of engine life on wing based on LS-SVM and Bayesian inference[J]. Journal of Nanjing University of Science and Technology, 2009, 37(6): 955-959. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-NJLG201306031.htm [3] 侯甲栋, 闫锋, 李明. 基于Minitab的通用航空发动机寿命件可靠性分析方法[J]. 航空维修与工程, 2013(2): 74-76. doi: 10.3969/j.issn.1672-0989.2013.02.036HOU Jia-dong, YAN Feng, LI Ming. Reliability analysis to life limit parts of general aviation engine based on Minitab[J]. Aviation Maintenance and Engineering, 2013(2): 74-76. (in Chinese) doi: 10.3969/j.issn.1672-0989.2013.02.036 [4] 陈国栋, 邢雷, 赵明. 国外航空发动机关键件定寿和延寿方法分析[J]. 航空发动机, 2013, 39(5): 60-65. doi: 10.3969/j.issn.1672-3147.2013.05.014CHEN Guo-dong, XING Lei, ZHAO Ming. Analysis of life deciding and life extending for aeroengine critical parts[J]. Aeroengine, 2013, 39(5): 60-65. (in Chinese) doi: 10.3969/j.issn.1672-3147.2013.05.014 [5] 白芳, 左洪福, 任淑红, 等. 航空发动机拆换率平滑方法研究[J]. 航空动力学报, 2008, 23(10): 1821-1828. https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI200810011.htmBAI Fang, ZUO Hong-fu, REN Shu-hong, et al. Research on a smoothing method for engine removal rate[J]. Jouranl of Aerospace Power, 2008, 23(10): 1821-1828. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI200810011.htm [6] 张营, 左洪福, 任淑红, 等. 一种航空发动机性能衰退预测的优化算法[J]. 中国机械工程, 2011, 22(9): 1009-1013. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGJX201109001.htmZHANG Ying, ZUO Hong-fu, REN Shu-hong, et al. Research on an algorithm for prediction of aeroengine performance deterioration[J]. China Mechanical Engineering, 2011, 22(9): 1009-1013. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGJX201109001.htm [7] 孙绍辉, 王华伟, 李伟. 潜在故障期内航空发动机的剩余寿命预测[J]. 航空计算技术, 2012, 42(1): 8-11. doi: 10.3969/j.issn.1671-654X.2012.01.003SUN Shao-hui, WANG Hua-wei, LI Wei. Predict residual useful life of aircraft engine during stage of potential failure[J]. Aeronautical Computing Technique, 2012, 42(1): 8-11. (in Chinese) doi: 10.3969/j.issn.1671-654X.2012.01.003 [8] 彭鸿博, 刘孟萌, 王悦阁. 基于起飞排气温度裕度(EGTM)的航空发动机寿命预测研究[J]. 科学技术与工程, 2014, 14(16): 160-164. doi: 10.3969/j.issn.1671-1815.2014.16.029PENG Hong-bo, LIU Meng-meng, WANG Yue-ge. Life prediction of engine based on take-off EGTM[J]. Science Technology and Engineering, 2014, 14(16): 160-164. (in Chinese) doi: 10.3969/j.issn.1671-1815.2014.16.029 [9] 王华伟, 高军, 吴海桥. 基于竞争失效的航空发动机剩余寿命预测[J]. 机械工程学报, 2014, 50(6): 197-205. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201406032.htmWANG Hua-wei, GAO Jun, WU Hai-qiao. Residual remaining life prediction based on competing failures for aircraft engines[J]. Journal of Mechanical Engineering, 2014, 50(6): 197-205. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201406032.htm [10] LU C J, MEEKER W Q. Using degradation measures to estimate a time-to-failure distribution[J]. Technometrics, 1993, 35(2): 16l-174. [11] PLACE C S, SRURTT J E, ALLSOPP K, et al. Reliability prediction of helicopter transmission system using stress-strength interference with underlying damage accumulation[J]. Quality and Reliability Engineering International, 1999, 15(2): 69-78. doi: 10.1002/(SICI)1099-1638(199903/04)15:2<69::AID-QRE232>3.0.CO;2-# [12] TAKED A, SUZUKI N. An empirical model for device degradation due to hot-carrier injection[J]. IEEE Electron Device Letters, 1983, 4(4): 111-113. doi: 10.1109/EDL.1983.25667 [13] MEEKER W Q, LUVALLE M J. An accelerated life test model based on reliability kinetics[J]. Technometrics, 1995, 37(2): 133-146. doi: 10.1080/00401706.1995.10484298 [14] 赵建印. 基于性能退化数据的可靠性建模与应用研究[D]. 长沙: 国防科学技术大学, 2005.ZHAO Jian-yin. Study on reliability modeling and applications based on performance degradation[D]. Changsha: National University of Defense Technology, 2005. (in Chinese) [15] SUYKENS J A K, VANDEWALLE J. Least squares support vector machine classifiers[J]. Neural Processing Letters, 1999, 9(3): 293-300. doi: 10.1023/A:1018628609742 [16] 刘琦. 基于LS-SVM的时间序列预测方法及其应用研究[D]. 哈尔滨: 哈尔滨工业大学, 2011.LIU Qi. Research of time series prediction method and application based on LS-SVM[D]. Harbin: Harbin Institute of Technology, 2011. (in Chinese) [17] 邹心遥, 姚若河. 支持向量机在小子样IC可靠性评估中的应用[J]. 华南理工大学学报: 自然科学版, 2009, 37(1): 22-26. https://www.cnki.com.cn/Article/CJFDTOTAL-HNLG200901008.htmZOU Xin-yao, YAO Ruo-he. Application of support vector machine to reliability evaluation of small-sample IC[J]. Journal of South China University of Technology: Natural Science Edition, 2009, 37(1): 22-26. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HNLG200901008.htm [18] 任淑红. 民航发动机性能可靠性评估与在翼寿命预测方法研究[D]. 南京: 南京航空航天大学, 2010.REN Shu-hong. Research on methods of performance reliability assessments and life on wing prediction for civil aero engine[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2010. (in Chinese) [19] 王烨. 民机产品可靠性评估技术研究[D]. 南京: 南京航空航天大学, 2009.WANG Ye. Research on technique of reliability assessments for civil aircraft products[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2009. (in Chinese) [20] 白芳. 民航发动机机群调度优化与视情维修决策方法研究[D]. 南京: 南京航空航天大学, 2009.BAI Fang. Methods of scheduling and condition based maintenance decision making in civil aero engine fleet[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2009. (in Chinese) [21] 郭新辰. 最小二乘支持向量机算法及应用研究[D]. 长春: 吉林大学, 2008.GUO Xin-chen. Study on least square support vector machine algorithms and their applications[D]. Changchun: Jilin University, 2008. (in Chinese) [22] 程丽. Kuhn-Tucker条件的应用[J]. 宜春学院学报, 2005, 27(4): 22-23. doi: 10.3969/j.issn.1671-380X.2005.04.009CHENG Li. Application of the Kuhn-Tucker conditions[J]. Journal of Yichun University: Natural Science, 2005, 27(4): 22-23. (in Chinese) doi: 10.3969/j.issn.1671-380X.2005.04.009 [23] 关山, 闫丽红, 彭昶. LS-SVM回归算法在刀具磨损量预测中的应用[J]. 中国机械工程, 2015, 26(2): 217-222. doi: 10.3969/j.issn.1004-132X.2015.02.016GUAN Shan, YAN Li-hong, PENG Chang. Application of regression algorithm of LS-SVM in tool wear prediction[J]. China Mechanical Engineering, 2015, 26(2): 217-222. (in Chinese) doi: 10.3969/j.issn.1004-132X.2015.02.016 [24] 王国锋, 李启铭, 秦旭达, 等. 支持向量机在刀具磨损多状态监测中的应用[J]. 天津大学学报, 2011, 44(1): 35-39. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDX201101008.htmWANG Guo-feng, LI Qi-ming, QIN Xu-da, et al. Application of support-vector machine in tool wear of multi-stage monitoring[J]. Journal of Tianjin University, 2011, 44(1): 35-39. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDX201101008.htm [25] 鲍文磊. LS-SVM的GPU高性能计算方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2012.BAO Wen-lei. Research of efficient computing method on GPU-based LS-SVM[D]. Harbin: Harbin Institute of Technology, 2012. (in Chinese)