留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

山区圆曲线路段半挂汽车列车行驶安全性分析

姜康 张梦雅 陈一锴

姜康, 张梦雅, 陈一锴. 山区圆曲线路段半挂汽车列车行驶安全性分析[J]. 交通运输工程学报, 2015, 15(3): 109-117. doi: 10.19818/j.cnki.1671-1637.2015.03.013
引用本文: 姜康, 张梦雅, 陈一锴. 山区圆曲线路段半挂汽车列车行驶安全性分析[J]. 交通运输工程学报, 2015, 15(3): 109-117. doi: 10.19818/j.cnki.1671-1637.2015.03.013
JIANG Kang, ZHANG Meng-ya, CHEN Yi-kai. Driving safety analysis of semi-trailer train at circular curve section in mountain area[J]. Journal of Traffic and Transportation Engineering, 2015, 15(3): 109-117. doi: 10.19818/j.cnki.1671-1637.2015.03.013
Citation: JIANG Kang, ZHANG Meng-ya, CHEN Yi-kai. Driving safety analysis of semi-trailer train at circular curve section in mountain area[J]. Journal of Traffic and Transportation Engineering, 2015, 15(3): 109-117. doi: 10.19818/j.cnki.1671-1637.2015.03.013

山区圆曲线路段半挂汽车列车行驶安全性分析

doi: 10.19818/j.cnki.1671-1637.2015.03.013
基金项目: 

国家自然科学基金项目 51308177

中国博士后科学基金项目 2013M530230

高等学校博士学科点专项科研基金项目 20130111120031

详细信息
    作者简介:

    姜康(1974-),男,山东文登人,合肥工业大学副教授,工学博士,从事道路运输规划研究

  • 中图分类号: U491

Driving safety analysis of semi-trailer train at circular curve section in mountain area

More Information
    Author Bio:

    JIANG Kang(1974-), male, associate professor, PhD, +86-551-63831825, kangj@hfut.edu.cn

  • 摘要: 根据山区圆曲线路段的特点, 分析了轮胎的受力和变形情况, 建立了半挂汽车列车与山区圆曲线路段的耦合动力学模型。以牵引车和半挂车的轮胎侧偏角和折叠角为指标, 运用提出的动力学仿真法分析了不同车速下圆曲线路段半径、超高、滑动附着系数对半挂汽车列车行驶安全性的影响, 并与运行速度法和理论极限速度法的计算结果进行对比。仿真结果表明: 当圆曲线半径为125m, 路面超高为2%, 滑动附着系数分别为0.20、0.35、0.50、0.80时, 运用动力学仿真法求得的临界安全车速分别为20、35、55、72km·h-1, 运用运行速度法求得的临界安全车速均为50km·h-1, 运用理论极限速度法求得的临界安全车速分别为18、20、25、30km·h-1; 当圆曲线半径为250m, 滑动附着系数为0.35, 超高分别为0、2%、4%、6%时, 运用动力学仿真法求得的临界安全车速分别为35、38、25、20km·h-1, 运用运行速度法求得的临界安全车速均为60km·h-1, 运用理论极限速度法求得的临界安全车速分别为30、31、32、33km·h-1; 当路面超高为6%, 滑动附着系数为0.50, 圆曲线半径分别为125、250、400、650m时, 运用动力学仿真法求得的临界安全车速分别为58、62、70、72km·h-1, 运用运行速度法求得的临界安全车速分别为50、60、68、71km·h-1, 运用理论极限速度法求得的临界安全车速分别为28、37、48、60km·h-1。可见, 提出的动力学仿真法考虑了车辆悬架动力学特性、天气与路面条件, 可以准确描述半挂汽车列车的运行状态。

     

  • 图  1  轮胎变形分析

    Figure  1.  Tire deformation analysis

    图  2  半挂汽车列车

    Figure  2.  Semi-trailer train

    图  3  影响因素

    Figure  3.  Influence factors

    图  4  试验路1

    Figure  4.  Test road 1

    图  5  试验路2

    Figure  5.  Test road 2

    图  6  分析过程

    Figure  6.  Analysis process

    图  7  滑动附着系数为0.20时的牵引车轮胎侧偏角与车速的关系

    Figure  7.  Relationship between tire slip angle of tractor and vehicle speed when sliding adhesion coefficient is 0.20

    图  8  滑动附着系数为0.35时的牵引车轮胎侧偏角与车速的关系

    Figure  8.  Relationship between tire slip angle of tractor and vehicle speed when sliding adhesion coefficient is 0.35

    图  9  滑动附着系数为0.50时的牵引车轮胎侧偏角与车速的关系

    Figure  9.  Relationship between tire slip angle of tractor and vehicle speed when sliding adhesion coefficient is 0.50

    图  10  滑动附着系数为0.80时的牵引车轮胎侧偏角与车速的关系

    Figure  10.  Relationship between tire slip angle of tractor and vehicle speed when sliding adhesion coefficient is 0.80

    图  11  滑动附着系数为0.20时的半挂车轮胎侧偏角与车速的关系

    Figure  11.  Relationship between tire slip angle of semi-trailer and vehicle speed when sliding adhesion coefficient is 0.20

    图  12  滑动附着系数为0.35时的半挂车轮胎侧偏角与车速的关系

    Figure  12.  Relationship between tire slip angle of semi-trailer and vehicle speed when sliding adhesion coefficient is 0.35

    图  13  滑动附着系数为0.50时的半挂车轮胎侧偏角与车速的关系

    Figure  13.  Relationship between tire slip angle of semi-trailer and vehicle speed when sliding adhesion coefficient is 0.50

    图  14  滑动附着系数为0.80时的半挂车轮胎侧偏角与车速的关系

    Figure  14.  Relationship between tire slip angle of semi-trailer and vehicle speed when sliding adhesion coefficient is 0.8

    图  15  滑动附着系数为0.20时的折叠角与车速的关系

    Figure  15.  Relationship between articulation angle and vehicle speed when sliding adhesion coefficient is 0.20

    图  16  滑动附着系数为0.35时的折叠角与车速的关系

    Figure  16.  Relationship between articulation angle and vehicle speed when sliding adhesion coefficient is 0.35

    图  17  滑动附着系数为0.50时的折叠角与车速的关系

    Figure  17.  Relationship between articulation angle and vehicle speed when sliding adhesion coefficient is 0.50

    图  18  滑动附着系数为0.80时的折叠角与车速的关系

    Figure  18.  Relationship between articulation angle and vehicle speed when sliding adhesion coefficient is 0.80

    图  19  滑动附着系数与临界安全车速的关系曲线

    Figure  19.  Relationship ofsliding adhesioncoefficient and critical safespeed

    图  20  超高与临界安全车速的关系

    Figure  20.  Relationship between superelevation and critical safespeed

    图  21  不同滑动附着系数下3种方法临界安全车速的比较

    Figure  21.  Comparison of critical safe speeds for three methods under different sliding adhesion coefficients

    图  22  不同超高下3种方法临界安全车速的比较

    Figure  22.  Comparison of critical safe speeds for three methods under different superelevations

    图  23  不同圆曲线半径下3种方法临界安全车速的比较

    Figure  23.  Comparison of critical safe speeds for three methods under different circular curve radii

    表  1  半挂车主要参数

    Table  1.   Main parameters of semi-trailer

    表  2  牵引车主要参数

    Table  2.   Main parameters of tractor

    表  3  运行速度法的计算结果

    Table  3.   Calculation result by using running speed method

  • [1] 公安部交通管理局. 2013年道路交通事故统计年报[R]. 北京: 公安部交通管理局, 2014.

    Traffic Management Bureau of Public Security Ministry. Road traffic accident statistics annual report in 2013[R]. Beijing: Traffic Management Bureau of Public Security Ministry, 2014. (in Chinese)
    [2] CARLSON R C, PAPAMICHAIL I, PAPAGEORGIOU M. Comparison of local feedback controllers for the mainstream traffic flow on freeways using variable speed limits[J]. Journal of Intelligent Transportation Systems: Technology, Planning, and Operations, 2013, 17(4): 268-281. doi: 10.1080/15472450.2012.721330
    [3] LUO Zhen-ke, LIU Yue, GUO Chen. Operational characteristics of mixed traffic flow under bi-direction environment using cellular automaton[J]. Journal of Traffic and Transportation Engineering: English Edition, 2014, 1(6): 383-392. doi: 10.1016/S2095-7564(15)30288-9
    [4] WEI Da-li, LIU Hong-chao, CHEN Feng. Analysis of asymmetric driving behavior using a self-learning approach[J]. Transportation Research Part B: Methodological, 2013, 47(1): 1-14.
    [5] 李松龄, 裴玉龙. 冰雪路面公路平曲线路段限速仿真[J]. 哈尔滨工业大学学报, 2012, 44(10): 66-69. doi: 10.11918/j.issn.0367-6234.2012.10.014

    LI Song-ling, PEI Yu-long. Speed limit simulation on highway horizontal curve section under the condition of ice and snow pavement[J]. Journal of Harbin Institute of Technology, 2012, 44(10): 66-69. (in Chinese) doi: 10.11918/j.issn.0367-6234.2012.10.014
    [6] BOWMAN B L, COLEMAN J A. Grade severity rating system[J]. ITE Journal, 1990, 60(7): 19-24.
    [7] 翟润平, 周彤梅, 安荷萍. 高速公路限速控制研究[J]. 公安大学学报: 自然科学版, 2001(6): 34-38. doi: 10.3969/j.issn.1672-2140.2001.06.006

    ZHAI Run-ping, ZHOU Tong-mei, AN He-ping. The speed control research for highway[J]. Journal of Chinese People's Public Security University: Natural Science, 2001(6): 34-38. (in Chinese) doi: 10.3969/j.issn.1672-2140.2001.06.006
    [8] 孙会元, 孙黎, 韦干全. 公路车速限制与行车安全视距关系研究[J]. 公路, 2002(2): 72-74. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL200202021.htm

    SUN Hui-yuan, SUN Li, WEI Gan-quan. Study on the relationship between highway speed limit and traffic safetydistance[J]. Highway, 2002(2): 72-74. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL200202021.htm
    [9] 李长城, 张高强, 刘兴旺. 南友公路限速方法研究[J]. 公路, 2009(10): 141-146.

    LI Chang-cheng, ZHANG Gao-qiang, LIU Xing-wang. A study on speed limits setting for Nanning-Youyiguan Expressway[J]. Highway, 2009(10): 141-146. (in Chinese)
    [10] 何杰, 刘霞, 陈一锴, 等. 恶劣天气路面条件对行车安全的影响[J]. 交通运输工程学报, 2011, 11(1): 58-63. doi: 10.3969/j.issn.1671-1637.2011.01.010

    HE Jie, LIU Xia, CHEN Yi-kai, et al. Influence of road condition on running safety in atrocious weather[J]. Journal of Traffic and Transportation Engineering, 2011, 11(1): 58-63. (in Chinese) doi: 10.3969/j.issn.1671-1637.2011.01.010
    [11] YOUNG R K, LIESMAN J. Estimating the relationship between measured wind speed and overturning truck crashes using a binary logit model[J]. Accident Analysis and Prevention, 2007, 39(3): 574-580. doi: 10.1016/j.aap.2006.10.002
    [12] 彭佳, 何杰, 赵池航, 等. 山体坡度对山体周围高速公路路面风速及行车安全的影响[J]. 东南大学学报: 自然科学版, 2010, 40(1): 201-206. doi: 10.3969/j.issn.1001-0505.2010.01.038

    PENG Jia, HE Jie, ZHAO Chi-hang, et al. Influence of terrain slope of hilly freeway on surface wind velocity and driving safety[J]. Journal of Southeast University: Natural Science Edition, 2010, 40(1): 201-206. (in Chinese) doi: 10.3969/j.issn.1001-0505.2010.01.038
    [13] WEI Da-li, LIU Hong-chao. An adaptive-margin support vector regression for short-term traffic flow forecast[J]. Journal of Intelligent Transportation Systems: Technology, Planning, and Operations, 2013, 17(4): 317-327. doi: 10.1080/15472450.2013.771107
    [14] AMBROZ M, kU kTER kIC G, PREBIL I. Creating models of road sections and their use in driving dynamics simulations[J]. Vehicle System Dynamics, 2007, 45(10): 911-924. doi: 10.1080/00423110701538270
    [15] 何杰, 彭佳, 李旭宏, 等. 路面随机激励时域模型特性的仿真研究[J]. 武汉理工大学学报: 交通科学与工程版, 2009, 33(5): 919-922. doi: 10.3963/j.issn.1006-2823.2009.05.027

    HE Jie, PENG Jia, LI Xu-hong, et al. Study on the characteristics of domain models of road irregularity excitation by simulation[J]. Journal of Wuhan University of Technology: Transportation Science and Engineering, 2009, 33(5): 919-922. (in Chinese) doi: 10.3963/j.issn.1006-2823.2009.05.027
    [16] YOHIMURA T. A semi-active suspension of passenger cars using fussy reasoning and the field testing[J]. International Journal of Vehicle Design, 1998, 19(2): 150-166.
    [17] 彭佳, 何杰, 丛颖, 等. 三维随机路面通用模型建立与仿真[J]. 农业机械学报, 2009, 40(3): 1-4, 25. https://www.cnki.com.cn/Article/CJFDTOTAL-NYJX200903000.htm

    PENG Jia, HE Jie, CONG Ying, et al. Modeling and simulation of general 3D virtual stochastic road model[J]. Transactions of the Chinese Society for Agricultural Machinery, 2009, 40(3): 1-4, 25. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-NYJX200903000.htm
    [18] 郭孔辉, 卢荡. 动态载荷下轮胎侧偏特性的理论及试验研究[J]. 汽车工程, 2005, 27(1): 89-92. doi: 10.3321/j.issn:1000-680X.2005.01.024

    GUO Kong-hui, LU Dang. The theoretical and experimental study on tire cornering properties under dynamic vertical load[J]. Automotive Engineering, 2005, 27(1): 89-92. (in Chinese) doi: 10.3321/j.issn:1000-680X.2005.01.024
  • 加载中
图(23) / 表(3)
计量
  • 文章访问数:  643
  • HTML全文浏览量:  92
  • PDF下载量:  737
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-01-09
  • 刊出日期:  2015-06-20

目录

    /

    返回文章
    返回