留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同除冰工艺对机场水泥混凝土道面的损伤特性

赵方冉 杜拾妹 刘新琛 安文波 徐小磊

赵方冉, 杜拾妹, 刘新琛, 安文波, 徐小磊. 不同除冰工艺对机场水泥混凝土道面的损伤特性[J]. 交通运输工程学报, 2015, 15(4): 18-25. doi: 10.19818/j.cnki.1671-1637.2015.04.003
引用本文: 赵方冉, 杜拾妹, 刘新琛, 安文波, 徐小磊. 不同除冰工艺对机场水泥混凝土道面的损伤特性[J]. 交通运输工程学报, 2015, 15(4): 18-25. doi: 10.19818/j.cnki.1671-1637.2015.04.003
ZHAO Fang-ran, DU Shi-mei, LIU Xin-chen, AN Wen-bo, XU Xiao-lei. Damage characteristics of cement concrete pavement for airfield resulted from different de-icing techniques[J]. Journal of Traffic and Transportation Engineering, 2015, 15(4): 18-25. doi: 10.19818/j.cnki.1671-1637.2015.04.003
Citation: ZHAO Fang-ran, DU Shi-mei, LIU Xin-chen, AN Wen-bo, XU Xiao-lei. Damage characteristics of cement concrete pavement for airfield resulted from different de-icing techniques[J]. Journal of Traffic and Transportation Engineering, 2015, 15(4): 18-25. doi: 10.19818/j.cnki.1671-1637.2015.04.003

不同除冰工艺对机场水泥混凝土道面的损伤特性

doi: 10.19818/j.cnki.1671-1637.2015.04.003
基金项目: 

国家自然科学基金项目 51408598

中国民航大学机场工程研究基地开放基金项目 JCJD1302

详细信息
    作者简介:

    赵方冉(1960-), 男, 山东东平人, 中国民航大学教授, 从事机场工程研究

  • 中图分类号: U416.216

Damage characteristics of cement concrete pavement for airfield resulted from different de-icing techniques

More Information
  • 摘要: 进行了热风除冰、乙二醇化学除冰与尿素化学除冰的模拟试验, 测试了混凝土试件质量损失和强度降低率, 分析了除冰方式与除冰次数对水泥混凝土道面的损伤规律。分析结果表明: 热风除冰对试件表层损伤反应较慢, 在经过45次冻融循环后才表现出明显的质量损失, 但其对试件内部结构损伤却较严重, 50次热风除冰后的强度降低超过35%。虽然50次化学除冰后试件的强度降低小于20%, 但试件表层的腐蚀性损伤造成的质量损失较显著, 尿素的腐蚀所造成的质量损失高达8.5%, 比热风除冰的质量损失高5倍以上。可见, 为了保持机场道面结构强度, 化学除冰要比热风除冰更为合理。为了降低机场跑道混凝土剥落对飞机发动机损害的隐患, 宜优先采用热风除冰方式, 但须关注其对道面结构强度的影响。

     

  • 图  1  热风除冰对试件表面的损坏状况

    Figure  1.  Surface deteriorating situations of concrete specimens after hot air de-icing

    图  2  热风除冰后的混凝土质量损失

    Figure  2.  Mass loss of concrete after hot air de-icing

    图  3  热风除冰后混凝土强度变化

    Figure  3.  Strength change of concrete after hot air de-icing

    图  4  热风强吹除冰后混凝土强度降低率

    Figure  4.  Strength losses of concrete after hot air de-icing

    图  5  喷洒乙二醇除冰前后混凝土试件的损伤特征

    Figure  5.  Surface deteriorating situations of concrete specimens before and after ethylene glycol de-icing

    图  6  喷洒乙二醇除冰后混凝土质量变化

    Figure  6.  Mass loss of concrete after ethylene glycol de-icing

    图  7  喷洒乙二醇除冰后混凝土强度变化

    Figure  7.  Strength change of concrete after ethylene glycol de-icing

    图  8  喷洒尿素除冰前后混凝土试件的损伤特征

    Figure  8.  Surface deteriorating situations of concrete specimens after carbamide de-icing

    图  9  喷洒尿素除冰后混凝土质量损失

    Figure  9.  Mass loss of concrete after carbamide de-icing

    图  10  喷洒尿素除冰后混凝土强度变化

    Figure  10.  Strength change of concrete after carbamide de-icing

    图  11  化学除冰后混凝土强度损失比较

    Figure  11.  Strength loss comparison of concrete after chemical de-icing

    图  12  不同除冰方式对水泥混凝土道面质量损失的影响规律

    Figure  12.  Influence rules of different de-icing methods on mass loss of cement concrete pavement

    图  13  不同除冰方式对水泥混凝土道面强度降低率的影响规律

    Figure  13.  Influence rules of different de-icing methods on strength loss of cement concrete pavement

    表  1  混凝土的配比组成

    Table  1.   Compositions of concrete

  • [1] FAY L, SHI Xian-ming. Environmental impacts of chemicals for snow and ice control: state of the knowledge[J]. Water, Air, and Soil Pollution, 2012, 223(5): 2751-2770. doi: 10.1007/s11270-011-1064-6
    [2] ROSENQVIST M, OXFALL M, FRIDH K, et al. A test method to assess the frost resistance of concrete at the waterline of hydraulic structures[J]. Materials and Structures, 2014, 47(3): 1-13.
    [3] 张鹏, 张连水, 赵铁军, 等. 混凝土冻融损伤后的吸水特性[J]. 建筑材料学报, 2011, 14(2): 155-159, 195. doi: 10.3969/j.issn.1007-9629.2011.02.002

    ZHANG Peng, ZHANG Lian-shui, ZHAO Tie-jun, et al. Water absorption properties of concrete after freeze-thaw damages[J]. Journal of Building Materials, 2011, 14(2): 155-159, 195. (in Chinese). doi: 10.3969/j.issn.1007-9629.2011.02.002
    [4] PARK J, HYUN C U, PARK H D. Changes in microstructure and physical properties of rocks caused by artificial freezethaw action[J]. Bulletin of Engineering Geology and the Environment, 2015, 74(2): 555-565. doi: 10.1007/s10064-014-0630-8
    [5] 吴裕锦, 周治国. 融雪剂对华南高速公路基础设施使用寿命的危害[C]∥中国科学技术协会. 2008中国科协防灾减灾论坛论文集. 北京: 中国科学技术协会, 2008: 717-719. WU Yu-jin, ZHOU Zhi-guo. The snow-melting agent effects on highway infrastructure at south of China[C]∥China Association for Science and Technology. The 2008Symposiums of Disaster Prevention and Mitigation Forum of China Association for Science and Technology. Beijing: China Association for Science and Technology, 2008: 717-719. (in Chinese).
    [6] 赵鸿铎, 姚祖康, 张长安, 等. 飞机除冰液对停机坪水泥混凝土的影响[J]. 交通运输工程学报, 2004, 4(2): 1-5. doi: 10.3321/j.issn:1671-1637.2004.02.001

    ZHAO Hong-duo, YAO Zu-kang, ZHANG Chang-an, et al. Influence of aircraft deicer on apron cement concrete[J]. Journal of Traffic and Transportation Engineering, 2004, 4(2): 1-5. (in Chinese). doi: 10.3321/j.issn:1671-1637.2004.02.001
    [7] MIRZA J, ABESQUE C, BÉRUBÉM A. Evaluation of surface sealers for concrete hydraulic structures exposed to low temperatures[J]. Materials and Structures, 2011, 44(1): 5-12. doi: 10.1617/s11527-010-9604-x
    [8] LAUER K R. Classification of concrete damage caused by chemical attack[J]. Materials and Structures, 1990, 23(3): 223-229. doi: 10.1007/BF02473022
    [9] 李晔明. 机场道面的表面温度冲击效应研究[D]. 天津: 中国民航大学, 2014.

    LI Ye-ming. The research of the temperature shock effect on the airport roads'surface[D]. Tianjin: Civil Aviation University of China. (in Chinese).
    [10] KIM S H, PARK J Y, JEONG J H. Effect of temperatureinduced load on airport concrete pavement behavior[J]. Journal of Civil Engineering, 2014, 18(1): 182-187.
    [11] 李立辉. 盐碱环境下混凝土冻融-干湿循环复合作用的研究[D]. 哈尔滨: 哈尔滨工业大学, 2011.

    LI Li-hui. Study on alkaline environment under freeze-thaw and dry-wet cycling of concrete[D]. Harbin: Harbin Institute of Technology, 2011. (in Chinese).
    [12] FABBRI A, COUSSY O, FEN-CHONG T, et al. Are deicing salts necessary to promote scaling in concrete?[J]. Journal of Engineering Mechanics, 2008, 134(7): 589-598. (in Chinese) doi: 10.1061/(ASCE)0733-9399(2008)134:7(589)
    [13] 敦晓, 岑国平, 黄灿华, 等. 机场道面混凝土冻融破坏评价指标[J]. 交通运输工程学报, 2010, 10(1): 13-18. http://transport.chd.edu.cn/article/id/201001003

    DUN Xiao, CEN Guo-ping, HUANG Can-hua, et al. Evaluation indices of freezing-thawing destruction for airfield runway concrete[J]. Journal of Traffic and Transportation Engineering, 2010, 10(1): 13-18. (in Chinese). http://transport.chd.edu.cn/article/id/201001003
    [14] SETZER M J, AUBERG R, KASPAREK S, et al. CIF-testcapillary suction, internal damage and freeze thaw test[J]. Materials and Structures, 2001, 34(9): 515-525. doi: 10.1007/BF02482179
    [15] 罗昕, 卫军. 冻融条件下混凝土劣化陡劣点的探讨[J]. 混凝土, 2005(11): 14-16, 42. https://www.cnki.com.cn/Article/CJFDTOTAL-HLTF200511003.htm

    LUO Xin, WEI Jun. Sharp degradation point of concrete under freezing-thawing cycles[J]. Concrete, 2005(11): 14-16, 42. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HLTF200511003.htm
    [16] 任旭晨, 万小梅, 赵铁军. 混凝土冻融及盐冻劣化机理研究进展及模型综述[J]. 混凝土, 2012(9): 15-18. https://www.cnki.com.cn/Article/CJFDTOTAL-HLTF201209006.htm

    REN Xu-chen, WAN Xiao-mei, ZHAO Tie-jun. Review of mechanism and mathematical model for salt scaling and freezingthawing damage of concrete[J]. Concrete, 2012(9): 15-18. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HLTF201209006.htm
    [17] 马好霞. 混凝土在机场除冰液作用下的抗腐蚀性[D]. 南京: 南京航空航天大学, 2012.

    MA Hao-xia. Corrosion resistance of concretes subjected to airport deicer[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012. (in Chinese).
    [18] 李晔, 姚祖康, 孙旭毅, 等. 铺面水泥混凝土冻融环境量化研究[J]. 同济大学学报: 自然科学版, 2004, 32(10): 1408-1412. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ200410029.htm

    LI Ye, YAO Zu-kang, SUN Xu-yi, et al. Quantification research on the frost environment of pavement cement concrete[J]. Journal of Tongji University: Natural Science, 2004, 32(10): 1408-1412. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ200410029.htm
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  547
  • HTML全文浏览量:  51
  • PDF下载量:  610
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-02-12
  • 刊出日期:  2015-04-25

目录

    /

    返回文章
    返回